Supporting Information to:

Structure of P3HT crystals, thin films, and solutions by UV/Vis spectral analysis

Marcus Böckmann^{1*}, Thomas Schemme², Djurre H. de Jong³, Cornelia Denz², Andreas Heuer³, Nikos L. Doltsinis¹

¹Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory & Computation, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany.

 ²Institut für Angewandte Physik, Westfälische Wilhelms-Universität Münster, Corrensstr. 2/4, 48149 Münster, Germany.
 ³Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory & Computation,

Corrensstr. 28/30, 48149 Münster, Germany.

(Dated: September 24, 2015)

 $^{^{\}ast}$ corresponding author, email: marcus.boeckmann@uni-muenster.de

Contents

1. Literature survey of P3HT UV-vis absorption data	1
2. Comparison of range-separated functionals	4
3. Environmental effects	5
4. Frontier MOs of thin film structures	8
5. Frontier MOs of solution structures	10
6. Frontier orbitals of 3-Me-Thiophene	12
7. Individual UV-vis spectra of thin film structures	13
8. Individual UV-vis spectra of solution structures	14
9. Decomposition of experimental mixed solvent spectra	15
References	17

1. LITERATURE SURVEY OF P3HT UV-VIS ABSORPTION DATA

TABLE S1: Experimentally observed absorption band energies of P3HT in eV reported in literature together with the ratio of intensities of the hypothetical "0-0" and "0-1" vibrational transitions, I_{0-0}/I_{0-1} , as discussed in, e.g., Spano et al. [1]; the mass of the polymer as well as the solvent is given whenever possible (entries in brackets indicate solvent used for spin coating).

			"crystal"			,	"thin	"solution"		
source	M_W/kDa	$\operatorname{solvent}^{a)}$	0-0	0-1	$\frac{I_{0-0}}{I_{0-1}}$	0-0	0-1	max	$\frac{I_{0-0}}{I_{0-1}}$	max
Rahimi et al. (2014)	2]:									
single crystal	26.4	n/a	1.82	2.10	2.2	-	-	-	-	-
thin film	ditto	(3HT)	-	-	-	2.06	2.23	2.36	0.8	-
solution	ditto	$3\mathrm{HT}$	-	-	-	-	-	-	-	2.72
Paquin et al. (2013) [3	3]:									
thin film	12.4	(p-xylene)	-	-	-	2.05	2.25	2.40	0.6	-
thin film	264.0	(ditto)	-	-	-	2.00	2.20	2.38	0.95	-
Niles et al. (2012) [4]:										
thin film	50-65	(toluene)	-	-	-	2.06	2.24	2.39	0.65	-
nanofibers	ditto	toluene	-	-	-	2.01	2.19	2.36	1.0	-
Scharsich et al. (2012)) [5]:									
solution $(74mer)$	21.6	CHCl_3	-	-	-	-	-	-	-	2.75
solution $(43mer)$	15.2	CHCl_3	-	-	-	-	-	-	-	2.75
solution $(19mer)$	6.3	CHCl_3	-	-	-	-	-	-	-	2.85
solution $(74mer)$	21.6	90% EtAc	-	-	-	2.05	2.22	2.35	0.8	-
solution $(43mer)$	15.2	90% EtAc	-	-	-	2.05	2.25	2.35	0.8	-
solution $(19mer)$	6.3	90% EtAc	-	-	-	-	-	-	-	2.65
Hu et al. (2009) [6]:										
solution	$\dot{2}^{b}$	THF	-	-	-	-	-	-	-	2.78
suspension	ditto	$\mathrm{THF}/\mathrm{H}_{2}\mathrm{O}$	-	-	-	2.10	2.25	2.47	0.6	-
Shrotriya et al. (2009) [7]:										

continued on next page

TABLE S1: (contd.) Experimentally observed absorption band energies of P3HT in eV reported in literature together with the ratio of intensities of the hypothetical "0-0" and "0-1" vibrational transitions, I_{0-0}/I_{0-1} , as discussed in, e.g., Spano et al. [1]; the mass of the polymer as well as the solvent is given whenever possible (entries in brackets indicate solvent used for spin coating).

			"crystal"			"thin film"				"solution"
source	M_W/kDa	$solvent^{a)}$	0-0	0-1	$\frac{I_{0-0}}{I_{0-1}}$	0-0	0-1	max	$\frac{I_{0-0}}{I_{0-1}}$	max
thin film	$?^{b)}$	(DCB)	-	-	-	2.17	2.39	2.51	0.7	-
solution	ditto	DCB	-	-	-	-	-	-	-	3.41
Manceau et al. (2009)	[8]:									
thin film	$\dot{\gamma}^{b}$	CB	-	-	-	2.07	2.25	2.38	0.65	-
Motaung et al. (2009)	[9]:									
solution	64.0	CHCl_3	-	-	-	2.12	2.30	2.45	0.8	-
Cook et al. (2008) [10]	:									
thin film	55	(CB)	-	-	-	2.05	2.23	2.39	0.6	-
solution	ditto	CB	-	-	-	-	-	-	-	2.72
Clark et al. (2007) [11]	<u>]:</u>									
solution	$?^b)$	CHCl_3	-	-	-	-	-	-	-	2.74
solution, $70^{\circ} \mathrm{C}$	ditto	isodurene	-	-	-	-	-	-	-	2.74
solution	ditto	isodurene	-	-	-	2.03	2.20	-	0.93	2.70
thin film	ditto	(CHCl_3)	-	-	-	2.06	2.24	2.39	0.68	-
thin film	ditto	(isodurene)	-	-	-	2.05	2.20	2.36	0.81	-
Kim et al. (2006) [12]	<u>:</u>									
thin film, 95.2% rr	21.9	(CB)	-	-	-	2.05	2.21	2.37	0.7	-
thin film, 93.0% rr	31.9	(CB)	-	-	-	2.05	2.21	2.37	0.6	-
thin film, 90.7% rr	45.9	(CB)	-	-	-	2.05	2.21	2.39	0.5	-

continued on next page

TABLE S1: (contd.) Experimentally observed absorption band energies of P3HT in eV reported in literature together with the ratio of intensities of the hypothetical "0-0" and "0-1" vibrational transitions, I_{0-0}/I_{0-1} , as discussed in, e.g., Spano et al. [1]; the mass of the polymer as well as the solvent is given whenever possible (entries in brackets indicate solvent used for spin coating).

			"crystal"			"thin film"				"solution"
source	$M_W/{\rm kDa}$	$solvent^{a)}$	0-0	0-1	$\frac{I_{0-0}}{I_{0-1}}$	0-0	0-1	max	$\frac{I_{0-0}}{I_{0-1}}$	max
Brown et al. (2003) [1	3]:									
thin film	$\dot{\gamma}^{b}$	$(CHCl_3)$	-	-	-	2.09	2.27	2.37	0.69	-
thin film, regio-random	ditto	$(CHCl_3)$	-	-	-	2.09	2.72	3.05	0.25	-
this work:										
solution	65 ± 10	CHCL_3	-	-	-	-	-	-	-	2.75
solution	ditto	50% EtAc	-	-	-	2.03	2.17	2.37	0.89	-
thin film	ditto	(CB)	-	-	-	2.05	2.23	2.40	0.57	-
Macchi et al. (2009): [1	[4]									
$4\mathrm{T}^{a)}$	0.33	n-tDc	-	-	-	-	-	-	-	3.19
diMe-4T	0.36	ditto	-	-	-	-	-	-	-	3.24
tetraMe-4T	0.39	ditto	-	-	-	-	-	-	-	3.51
4T, 4K	0.33	ditto	-	-	-	2.78	2.93	3.13	0.95	-
diMe-4T, $4\mathrm{K}$	0.36	ditto	-	-	-	2.80	2.98	3.19	0.73	-
tetra Me-4T, $4\mathrm{K}$	0.39	ditto	-	-	-	2.78	2.95	3.15	0.73	-

^{a)} 3HT = 3-hexyl-thiophene, EtAc = ethylacetate, THF = tetrahydrofuran, CB = chlorobenzene, DCB = 1,2-dichlorobenzene, tDc = tetradecane, 4T = quaterthiophene ^{b)} not specified

2. COMPARISON OF RANGE-SEPARATED FUNCTIONALS

FIG. S1: Comparison of normalised TDDFT absorption spectra for a P3HT 32mer in planar crystal geonetry using the LC-BLYP and CAM-B3LYP functionals with the 6-31G* basis set. Hexyl groups were replaced by methyl groups.

3. ENVIRONMENTAL EFFECTS

FIG. S2: Crystal spectrum calculated using TDDFT/LC-BLYP/6-31G* with and without the PCM model for the environment. Hexyl groups were replaced by methyl groups.

FIG. S3: Averaged thin film spectra calculated using TDDFT/PBE0/6-31G* with and without the PCM model for the solvent.

FIG. S4: Averaged solution spectra calculated using TDDFT/PBE0/6-31G* with and without the PCM model for the solvent.

4. FRONTIER MOS OF THIN FILM STRUCTURES

FIG. S5: Highest occupied molecular orbitals (HOMOs) of randomly selected a morphous P3HT chains calculated with PBE0/6-31G*.

FIG. S6: Lowest unoccupied molecular orbitals (LUMOs) of randomly selected amorphous P3HT chains calculated with PBE0/6-31G*.

5. FRONTIER MOS OF SOLUTION STRUCTURES

FIG. S7: Highest occupied molecular orbitals (HOMOs) of randomly selected solute P3HT chains calculated with $PCM/PBE0/6-31G^*$.

FIG. S8: Highest unoccupied molecular orbitals (LUMOs) of randomly selected solute P3HT chains calculated with $PCM/PBE0/6-31G^*$.

6. FRONTIER ORBITALS OF 3-ME-THIOPHENE

FIG. S9: Frontier orbitals of 3-Methyl-thiophene calculated with B3LYP/6-31G* showing the nodal structure of the π -system MOs.

FIG. S10: P3HT thin film: individual TDDFT/6-31G* UV-vis spectra of the 10 selected structures. Band shape (green) obtained from calculated line spectrum (red) with Lorentzian broadening (FWHM = 50 nm). The end-to-end distance given in each graph shows no obvious correlation with the spectral shape or position.

FIG. S11: P3HT solution: individual TDDFT/6-31G* UV-vis spectra of the 10 structures. Band shape (green) obtained from calculated line spectrum (red) with Lorentzian broadening (FWHM = 50 nm).

FIG. S12: Decomposition of experimental UV-vis spectra (green) in mixed solvent according to Scharsich et al. [5]. Pure 'thin film' spectrum (solid blue line) results by subtracting contribution (dashed blue line) of 'pure' solution (red).

FIG. S13: Comparison of pure 'thin film' spectra obtained by the decomposition presented inFig. S12 for different ratios of 'poor' and 'good' solvent.

- [1] F. C. Spano and C. Silva, Ann. Rev. Phys. Chem. 65, 477 (2014).
- [2] K. Rahimi, I. Botiz, J. O. Agumba, S. Motamen, N. Stingelin, and G. Reiter, RSC Adv. 4, 11121 (2014).
- [3] F. Paquin, H. Yamagata, N. J. Hestand, M. Sakowicz, N. Bérubé, M. Côté, L. X. Reynolds,
 S. A. Haque, N. Stingelin, F. C. Spano, et al., Phys. Rev. B 88, 155202 (2013).
- [4] E. T. Niles, J. D. Roehling, H. Yamagata, A. J. Wise, F. C. Spano, A. J. Moulé, and J. K. Grey, J. Phys. Chem. Lett. 3, 259 (2012).
- [5] C. Scharsich, R. H. Lohwasser, M. Sommer, U. Asawapirom, U. Scherf, M. Thelakkat, D. Neher, and A. Köhler, J. Polym. Sci. Part B: Polym. Phys. 50, 442 (2012).
- [6] Z. Hu and A. J. Gesquiere, Chem. Phys. Lett. 476, 51 (2009).
- [7] V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li, and Y. Yang, Chem. Phys. Lett. 411, 138 (2005).
- [8] M. Manceau, A. Rivaton, J.-L. Gardette, S. Guillerez, and N. Lemaître, Polym. Degrad. Stab. 94, 898 (2009).
- [9] D. E. Motaung, G. F. Malgas, C. J. Arendse, S. E. Mavundla, and D. Knoesen, Mater. Chem. Phys. 116, 279 (2009).
- [10] S. Cook, A. Furube, and R. Katoh, Energy Environ. Sci. 1, 294 (2008).
- [11] J. Clark, C. Silva, R. H. Friend, and F. C. Spano, Phys. Rev. Lett. 98, 206406 (2007).
- Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, et al., Nature Materials 5, 197 (2006).
- [13] P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J.-S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, Phys. Rev. B 67, 064203.1 (2003).
- [14] G. Macchi, B. M. Medina, M. Zambianchi, R. Tubino, J. Cornil, G. Barbarella, J. Gierschner, and F. Meinardia, Phys. Chem. Chem. Phys. 11, 984 (2009).