Supplementary Information for

Anisotropic thermoelectric properties of layered compounds

in SnX₂ (X = S, Se): A promising thermoelectric

Bao-Zhen Sun,^{1,2} Zuju Ma,¹ Chao He¹ and Kechen Wu^{1,a)}

¹ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the

Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

² School Chemistry and Chemical Engineering, Guangxi University, Nanning 530004,

China

^{a)} Author to whom correspondence should be addressed. Electronic mail: wkc@fjirsm.ac.cn.

Fig. S1. Band structures of SnS_2 (a) and $SnSe_2$ (b). Top of the valence band is set to zero. The highest valence band and lowest conduction band are highlighted in red. *G*, *A*, *H*, *K*, *M*, *L* are (0 0 0), (0 0 0.5), (-0.333 0.667 0.5), (-0.333 0.667 0), (0 0.5 0), (0 0.5 0.5) high symmetry points, respectively.

Fig. S2. Temperature dependence of the electrical conductivities along the $a(\sigma_a)$ and $c(\sigma_c)$ directions in SnS₂ (a) and SnSe₂ (b) for four different carrier concentrations.

Fig. S3. Phonon dispersion of SnS_2 (a) and $SnSe_2$ (b). Three acoustic phonon branches are indicated with different colors.

SnS ₂			SnSe ₂		
GK/a	Θ(K)	$\nu(m/s)$	GK/a	$\Theta(K)$	$\nu(m/s)$
1	108	1538	1	80	1327
2	191	2902	2	153	2878
3	216	5289	3	167	4452
Average	172	3243	Average	133	2886
GA/c	$\Theta(K)$	$\nu(m/s)$	GA/c	$\Theta(K)$	v(m/s)
1	45	1904	1	59	2120
2	45	1903	2	60	2270
3	74	2899	3	60	2270
Average	55	2235	Average	60	2220

Table S1 Debye temperatures (Θ) and phonon velocities (v) along the *a* and *c* axes for SnS₂ and SnSe₂.

Values are calculated from the phonon dispersions (Figure S3). The Debye temperature is calculated using $\Theta = \omega_D/k_B$ (ω_D is the largest acoustic frequency in each direction); the phonon velocity is the slope of the acoustic phonon dispersion around the *G* point.