Excess Electron Reactivity in Amino Acid Aqueous Solution Revealed by Ab Initio Molecular Dynamics Simulation: Anion-Centered Localization and Anion-Relayed Electron Transfer Dissociation

Xiuxiu Wu, Liang Gao, Jinxiang Liu, Hongfang Yang, Shoushan Wang, Yuxiang Bu*

School of Chemistry & Chemical Engineering, Institute of Theoretical Chemistry, Shandong University, Jinan, 250100, People's Republic of China

The corresponding author: byx@sdu.edu.cn

Electronic Supplementary Materials

Contents

- 1. Snapshots for the Anion-Centered Excess Electron Localization in Glyaq
- 2. Snapshots for the Excess-Electron-Impacted N-C_{α} Bond Breaking of zw-Gly in Gly_{aq}
- 3. Side Chain Effect: Snapshots for the Excess Electron Interactions with $[Lys^+Cl^-]_{aq}$ and $[Asp^-Na^+]_{aq}$
- 4. AIMD-Simulated Potential Energy Curves of Gly_{aq}, [Asp⁻Na⁺]_{aq}, and EE@[Asp⁻Na⁺]_{aq}

1. Snapshots for the Anion-Centered Excess Electron Localization in Gly_{aq}

3200fs

4700fs

Figure S1. Visualized spin density distributions (isovalue=0.003) of representative snapshot configurations at different times in EE localization towards the $-COO^-$ anion group in Gly_{aq}.

Figure S2. (a) High correlation of the net Mulliken atomic charge differences (Q_--Q_0) of the $-COO^-$ group with its spin density distributions. Red line is the fitting one. (b) Comparison of two types of different charge/spin density analyses: Mulliken charge/spin density versus Hirshfeld charge/spin density (less basis-set dependent), which shows the same amount of charge transfer and the trend of EE localization on the -COO- group.

Figure S3. Radical distribution function (RDF) of $-COO^-$ group with O in H₂O (upper panel) and $-NH_3^+$ group with O in H₂O (lower panel). (a) and (1): before an EE is added; (b) and (2): the EE pre-localization stage after attached; (c) and (3): the EE localization on the $-COO^-$ group.

Figure S4. Time evolutions of the bond lengths of two C-O bonds and a C-C bond of the zw-Gly.

Table S1. The LUMO energy levels of the modeled molecular fragments in the gas phase and aqueous solution and water solvent which are the potential residing sites of an EE in Gly_{aq} . The orbital energies are calculated using the DFT method at the GGA/BLYP level with a DNP basis set.

	LUMO/eV	HOMO/eV
NH_3^+ – CH_3 ion	0.516	-0.203
CH ₃ COO ⁻ ion	-6.194	-6.925
water solvent	-1.912	-6.532
NH_3^+ – CH_3 aqueou solution	-2.024	-2.032
CH ₃ -COO ⁻ aqueou solution	-1.937	-6.708

Figure S5. The LUMO energy levels of the modeled molecular fragments in the gas phase and aqueous solution, and of water solvent which are the potential residing sites of an EE in Gly_{aq} for EE localization on the negatively charged –COO⁻ group.

Figure S6. LUMOs of the modeled molecular fragments in aqueous solution (isovalue=0.018)

Figure S7. Anion-centered EE localization pattern in Gly_{aq} (**a**) in comparison with an EE dipole-bound glycine anion in the gas phase (**b**).

2. Snapshots for the Excess-Electron-Induced N-C $_{\alpha}$ Bond Breaking of zw-Gly in Glycine Aqueous Solution

1400fs

1600fs

1650fs

1700fs

Figure S8. Visualized spin density distributions (isovalue=0.003) of representative snapshot configurations at different times for the EE-induced N-C_{α} bond cleavage process in Gly_{aq}.

Figure S9. Correlation of the spin density on the $-COO^-$ group with the dihedral angle between the O-C-O plane and C-C_{α}-N plane. Red line is the fitting one.

Table S2. The LUMO energy levels of the modeled molecular fragments in the gas phase, aqueous solution and water solvents which are the potential residing sites of an EE in Gly_{aq} . The orbital energies are calculated using the DFT method at the GGA/BLYP level with a DNP basis set.

	LUMO/eV	HOMO/eV	
CH ₃ –COO ⁻ ion	-6.194	-6.925	
+CH ₂ -COOH ion	-3.543	-5.582	
NH ₃ molecule	1.854	-5.288	
water solvent	-1.912	-6.532	
CH ₃ -COO ⁻ aqueou solution	-1.937	-6.708	
+CH ₂ -COOH aqueou solution	-4.412	-6.340	
NH ₃ aqueou solution	-2.136	-6.216	

Figure S10. The LUMO energy levels of the modeled molecular fragments in the gas phase and aqueous solution, and of water solvent which are the potential residing sites of an EE in Gly_{aq} for the EE-impacted fragmentation of the hydrated zw-Gly.

3. Side Chain Effect: Snapshots for the Excess Electron Interactions with $[Lys^+Cl^-]_{aq}$ and $[Asp^-Na^+]_{aq}$

A) Excess-Electron-Impacted Fragmentation of Hydrated Zwitterionic Lysine $[Lys^+Cl^-]_{aq}$

1100fs

 1200fs
 1250fs
 1300fs
 1350fs

1600fs 1650fs 1700fs 1750fs

Figure S11. Visualized spin density distributions (isovalue=0.003) of representative snapshot configurations at different times for the EE-induced N-C_{α} bond cleavage process in $[Lys^+Cl^-]_{aq}$.

Figure S12. Time evolution of spin density distributions on $zw-Lys^+$ (purple), water solvent (black), $-COO^-$ group (pink), backbone $-NH_3^+$ group (red), side chain $-NH_3^+$ group (blue) and the C1 atom (green) in $[Lys^+CI^-]_{aq}$. Sharp changes at about 1250 fs correspond to the impacted N-C_{α} bond breaking by EE transfer.

B) Anion-Centered Excess Electron Localization in Hydrated Zwitterionic Aspartic Acid

 $[Asp^-Na^+]_{aq}$

1100fs

1150fs

Figure S13. Visualized spin density distributions (isovalue=0.003) of representative snapshot configurations at different times in EE localization towards the -COO⁻ anion group in $[Asp^{-}Na^{+}]_{aq}$.

Figure S14. Time evolution of spin density distributions on $zw-Asp^-$ (black), water solvent (red), backbone $-COO^-$ group (pink), side chain $-COO^-$ group (blue) and $-NH_3^+$ group (green) in $[Asp^-Na^+]_{aq}$.

Figure S15. The distances between sodion and four oxygen atoms of $zw-Asp^-$ as a function of evolution time in $[Asp^-Na^+]_{aq}$. This shows that Na^+ is close to the side chain $-COO^-$ group.

Figure S16. The distances between chloridion and two nitrogen atoms of zw-Lys⁺ as a function of evolution time in $[Lys^+Cl^-]_{aq}$. This shows that the chloridion is far away from the two $-NH_3^+$ groups.

4. AIMD-Simulated Potential Energy Curves of Gly_{aq}, [Asp⁻Na⁺]_{aq}, and EE@[Asp⁻Na⁺]_{aq}

To further explore possible roles of an EE in impacting the cleavage of the backbone N-C_a bond of zw-Asp⁻ in solution, we AIMD simulated the N-C_a bond breaking process of zw-Asp⁻ in solution by a bond stretching simulation technique. As shown in Figure S17, for $[Asp^Na^+]_{aq}$, the zw-Asp⁻ fragmentation by the N-C_a bond cleavage needs to surmount an energy barrier of about 36.4 kcal/mol. However, for EE@[Asp^Na^+]_{aq}, the activation barrier becomes 31.3 kcal/mol, which is slightly smaller than that in the $[Asp^Na^+]_{aq}$ case. This means that the C-N is still difficult to cleave. This observation indicates the homogeneous group, -COO⁻, considerably inhibits the EE localization towards the C-N bond and, as a result, inhibits the zw-Asp⁻ N-C_a bond cleavage. In addition, compared with that in the Gly_{aq} case, the AIMD-simulated activation barrier of the zw-Asp⁻ N-C_a cleavage is increased by ~10 kcal/mol, which may be due to the steric hindrance of the side chain in solution.

For these simulations, each system consists of 100 water molecules around a central amino acid with/without a balance ion in a cubic box of length 14.60 Å. After equilibrating the system with a classical molecular dynamics (MD) simulation of the periodically repeated

box for 2.0 ns, we chose representative reference frames as starting points for subsequent AIMD simulations using DMol³ package. Further, using the CP2K/Quickstep software package (VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. *Comput. Phys. Commun.* **2005**, *167*, 103-128), we AIMD simulated the neutral system for an equilibration of 2.0 ps, and then MD simulated with the amino acid backbone C-N bond length every growth of 0.001 Å from 1.3 Å to 2.3 Å (black and olive line). Another neutral system was added a single EE and continued the AIMD simulation for 2.0 ps. Then we MD simulated the EE-added system energies with the amino acid backbone C-N bond length every growth of 0.001 Å from 1.3 Å to 2.3 Å (blue line). The NVT Ensemble is used and timestep is set to 1. Energy and forces are evaluated by BLYP exchange-correlation function and TZV2P-GTH basis set. The temperature is controlled at 300.0 K with Nose thermostat.

Figure S17. AIMD-simulated Energy curves of Gly_{aq} (olive), $[\text{Asp}^-\text{Na}^+]_{aq}$ (black), and $\text{EE}@[\text{Asp}^-\text{Na}^+]_{aq}$ (blue) as a function of the backbone N-C_{\alpha} bond length of the corresponding amino acid residues. The red are the corresponding fitting curves. The activation barriers calculated from these curves are 25.7 (Gly_{aq}), 36.4, and 31.3 kcal/mol, respectively. The energies are in a.u., while the N-C_{\alpha} bond length is in angstrom.