Supporting material

The Role of Alkoxy Radicals in the Heterogeneous OH Oxidation of Two Structural Isomers of Dimethylsuccinic Acid Aerosol

C. T. Cheng^a, M. N. Chan^{a,b*}, and K. R. Wilson^{c*}

^{*a*} Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China

^b The Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China

^c Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

**Corresponding author: mnchan@cuhk.edu.hk; krwilson@lbl.gov*

Fig. S1 The relative abundance of reaction products detected in the heterogeneous OH oxidation of 2,3-DMSA at different OH exposures. Only reaction products, which contribute more than 0.1% of the total signal at the maximum OH exposure, are shown. (a) Major products ($C_6H_{10}O_5$ and $C_5H_8O_3$). (b) - (e) Minor products grouped by their carbon number.

Fig S2 The relative abundance of reaction products detected in the heterogeneous OH oxidation of 2,2-DMSA at different OH exposures. Only reaction products, which contribute more than 0.1% of the total signal at the maximum OH exposure, are shown. (a) Major products ($C_6H_{10}O_5$, $C_5H_8O_3$, $C_5H_8O_5$ and $C_5H_8O_4$). (b)-(e) Minor products grouped by their carbon number.