Mechanism of Large Stokes Shift and Aggregation-Enhanced Emission of Osmapentalyne Cation in Solution: Combined MD Simulations and QM/MM Calculations

Guang-Xu Sun,^a Ming-Gang Ju,^a Hang Zang,^a Yi Zhao^b and WanZhen Liang^{b,*}

^a Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China

^b State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

E-mail: liangwz@xmu.edu.cn

^{*}To whom correspondence should be addressed

Table S1: The major weighted atom orbits contribution for LUMO and LUMO+1 orbits of isolated OC in solvent(- meaning that the value is smaller than 0.1)

	Water				Ethanol			
	Abs		Emi		Abs		Emi	
	LUMO	LUMO+1	LUMO	LUMO+1	LUMO	LUMO+1	LUMO	LUMO+1
$10s d_{xz}$	-	0.5094	0.3823	0.4433	-	0.505	0.3660	0.4519
$\overline{10s \ d_{yz}}$	0.3302	-	0.2507	0.2425	0.3299	-	0.2619	0.2329
$2C p_x$	-	0.2627	0.2123	0.2453	-	0.2585	0.2087	0.2615
$\overline{2C p_y}$	0.2385	-	0.2319	0.1956	0.2320	-	0.2345	0.1903
$2C p_z$	-	0.4374	0.2736	0.3546	-	0.4309	0.2613	0.3511
$\overline{3C p_y}$	0.2058	-	0.1186	0.1003	0.2043	-	0.1235	0.1038
$\overline{4C p_y}$	0.4772	-	0.3522	0.2854	0.4769	-	0.3553	0.2780
7C p_y	0.4401	-	0.3352	0.2731	0.4406	-	0.3389	0.2666
$\overline{8C p_y}$	0.3162	-	0.2556	0.1988	0.3214	-	0.2603	0.1976

Fig. S1: The detailed orbits of isolated OC.

Table S2: The structure parameters of ground (S_0) and excited (S_1) sates of isolated OC at the CAM-B3LYP level (the units of bond lengths and angles are Å and degree, respectively)

	Vacuum		Water		Ethanol	
	S_0	S_1	S_0	S_1	S_0	S_1
1Os-2C	1.8312	1.8895	1.8243	1.9668	1.8261	1.9637
10s-5C	2.0923	2.2053	2.0921	1.9978	2.0925	1.9996
10s-8C	2.0236	2.0328	2.0394	2.0724	2.0382	2.0747
10s-16Cl	2.4642	2.4063	2.5119	2.4833	2.5102	2.4785
10s-13P	2.4615	2.4635	2.4590	2.4793	2.4650	2.4810
10s-14P	2.4464	2.4436	2.4481	2.4747	2.4511	2.4785
∠2C-1Os-5C	73.313	68.301	72.928	78.758	72.920	78.880
∠2C-1Os-16Cl	116.47	110.96	113.62	100.69	114.04	99.747
∠8C-1Os-5C	74.526	73.123	74.688	78.000	74.644	77.966
∠8C-1Os-16Cl	95.690	108.98	98.769	102.56	98.390	103.41
∠2C-8C-1Os-5C	-0.918	-17.60	-1.244	-2.914	-0.875	-2.556
∠2C-8C-1Os-16Cl	-178.7	171.25	-179.0	177.73	-179.0	177.75
∠2C-8C-1Os-13P	-95.73	-104.4	-93.94	-91.11	-94.13	-91.02
∠2C-8C-1Os-14P	95.548	84.476	91.848	86.740	92.083	86.944

Fig. S2: The average distribution of (a)angle and (b)length of H-bonds between water molecules and OCs in solutions

Fig. S3: (left) The H-type aggregate dimer 1 and (right) J-type aggregate dimer 1' in OCs aggregate

Fig. S4: The spectra of (left)H-type aggregate dimer 1 and (right)J-type aggregate dimer 1' in OCs aggregate

Table S3: The orbital transitions for the absorption and emission of isolated O	\mathbf{C}
at the CAP-B3LYP level (H and L are abbreviated notations of HOMO an	d
LUMO, respectively)	

	Vacuum		Water		Ethanol	
	Abs.	Emi.	Abs.	Emi.	Abs.	Emi.
	$H-2 \rightarrow L$			H←L		H←L
Orb Trans	-0.42999	H←L	$H \rightarrow L$	-0.47229	$H \rightarrow L$	-0.45351
OID. ITalis.	$H-1 \rightarrow L$	0.67930	0.64374	$H \leftarrow L+1$	0.64080	$H \leftarrow L+1$
	0.44052			-0.45249		-0.47672

Fig. S5: The numbers of minimum distance between the OCs in aggregate with 0.6 nm threshold $% \mathcal{O}(\mathcal{O})$

Fig. S6: The average absorption energy of OCs in aggregate with standard deviation.

Fig. S7: The major atom orbits of osmium ring for (a) LUMO and (b) LUMO+1 orbits at S_0 geometry, (c) LUMO and (d) LUMO+1 orbits at S_1 geometry of isolated OC in solvent (isovalue is 0.07).

Fig. S8: The fluctuations of H-bond total number between water molecules and OCs in solutions.

Fig. S9: The average and standard deviation values of orbits energies of HOMO-1, HOMO, LUMO and LUMO+1 orbits of OCs in aggregate.