Supporting Information

Flexible Structural and Electronic Properties of a Pentagonal B₂C

Monolayer via External Strain: A Computational Investigation

Fengyu Li, Kaixiong Tu, Haijun Zhang, Zhongfang Chen*

Department of Chemistry, The Institute for Functional Nanomaterials, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931.

* To whom correspondence should be addressed. Email: <u>zhongfangchen@gmail.com</u> (Z.C.)

Table S1 Structural parameters and band gaps (E_{gap}) of biaxial strained pentagraphene monolayer, *h* denotes the thickness of the buckled penta-C monolayer, and *d* represents the average bond length.

	h/Å	$d_{\rm C1-C2}/{\rm \AA}$	$d_{\rm C2-C2}/{\rm \AA}$	$\theta_{C2C1C2}/^{o}$	$\theta_{C1C2C2}/^{o}$	$\theta_{C1C2C1}/^{o}$	$E_{\rm gap}/{\rm eV}$
$\eta = -17\%$	1.73	1.43	1.36	111	106	97	0.98
$\eta = -15\%$	1.66	1.44	1.35	109	107	99	1.91
$\eta = -10\%$	1.51	1.47	1.33	105	110	104	2.55
$\eta = -5\%$	1.36	1.51	1.33	102	112	108	3.08
$\eta = 0\%$	1.21	1.55	1.34	99	113	112	3.28 (3.25 ^a)
$\eta = 5\%$	1.08	1.60	1.36	97	115	115	3.38
$\eta = 10\%$	0.98	1.67	1.37	95	116	116	3.56
$\eta = 15\%$	0.90	1.74	1.38	94	117	117	3.64
$\eta = 17\%$	0.88	1.76	1.39	93	117	117	3.66

^{a.} S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, *P. Natl. Acad. Sci. USA*, 2015, **112**, 2372

Fig. S1 PBE band structures of penta-B₂C monolayer under biaxial strain.

Fig. S2 HSE06 band structures of penta-B₂C monolayer under biaxial strain.

Fig. S3 Top and side views of biaxial strained penta-graphene (2×2 supercell).

Fig. S4 HSE06 band structures of penta-graphene under biaxial strain.

Fig. S5 HSE06 band structures of penta-B₂C monolayer under uniaxial strain.