Formation of Li₃O₄ nano particles in the discharge products of non-aqueous lithium-oxygen batteries leads to lower charge voltage

Supporting Information

L. Shi, A. Xu, T.S. Zhao*

Department of Mechanical and Aerospace Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China

Table. S1 Lattice constant of LiO₂ (*Pnnm*)

	Zhuravlev	Seriani	Lau et al.	Kang et al	Our work	Experiment by
	et al. [1]	[2]	[3]	[4]		Bakulina et al. [5]
a (Å)	3.99	3.90	3.95	4.01	3.94	5.91
b (Å)	4.88	4.64	4.94	4.80	4.92	4.94
c (Å)	2.96	2.81	2.96	3.03	2.96	4.38
Note	GGA	GGA	GGA	HSE	GGA	

Table. S2 Lattice constant of Li₂O₂ and Li₃O₄

	a (Å)	b (Å)	c (Å)
$Li_2O_2(P6_3/mmc)$	3.14	3.14	7.65
$Li_3O_4(P\overline{6}m2)$	3.13	3.13	7.38

^{*}Corresponding author. Tel.: (852) 2358 8647 E-mail: metzhao@ust.hk (T.S. Zhao)

Fig. S1 Calculated Gibbs free energy of Li₂O₂ compared with experimental values [6]

Fig. S2 Formation Gibbs free energy of Li_2O_2 and Li_3O_4 under (a) different oxygen pressures when T = 300 K (b) different temperatures when P (O₂) = 1 atm

Fig. S3 Structures of terminations considered in the calculation of Li₂O₂ surface energies

Fig. S4 Surface energies of different terminations of Li₂O₂ as a function of oxygen chemical potential

Fig. S5 Surface energies of different orientations of Li₂O₂ as a function of oxygen chemical potential

Fig. S6 Structures of terminations considered in the calculation of Li_3O_4 surface energies

Fig. S7 Surface energies of different terminations of Li₃O₄ as a function of oxygen chemical potential

Fig. S8 Surface energies of different orientations of Li₃O₄ as a function of oxygen chemical potential

Fig. S9 The normalized surface energies of Li₃O₄ and Li₂O₂ as a function of oxygen chemical potential

References

[1] Zhuravlev Y N, Obolonskaya O S. Structure, mechanical stability, and chemical bond in alkali metal oxides [J]. Journal of Structural Chemistry, 2010, 51(6): 1005-1013.

[2] Seriani N. Ab initio thermodynamics of lithium oxides: from bulk phases to nanoparticles [J]. Nanotechnology, 2009, 20(44): 445703.

[3] Lau K C, Curtiss L A, Greeley J. Density functional investigation of the thermodynamic stability of lithium oxide bulk crystalline structures as a function of oxygen pressure [J]. The Journal of Physical Chemistry C, 2011, 115(47): 23625-23633.

[4] Kang S Y, Mo Y, Ong S P, et al. A facile mechanism for recharging Li2O2 in Li– O2 batteries [J]. Chemistry of Materials, 2013, 25(16): 3328-3336.

[5] Bakulina V M, Tokareva S A, Vol'nov I I. X-Ray Diffraction Analysis of LiO2 [J]. Zh. Strut. Khim, 1967, 8(6): 1104-1105.

[6] Chase M W. NIST-JANAF thermochemical tables [J]. 1998.