Supplementary information:

Flow tube studies of the C(³P) reactions with ethylene and

propylene

Michael Capron,¹ Jérémy Bourgalais,¹ Ranjith Kumar Abhinavam Kailasanathan,² David L. Osborn,³ Sébastien D. Le Picard,^{1,*} Fabien Goulav^{2,*}

¹ Institut de Physique de Rennes, Département de Physique Moléculaire, Astrophysique de Laboratoire, UMR

CNRS 6251, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France

² Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, USA

³ Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551,

USA

*Electronic mail: sebastien.le-picard@univ-rennes1.fr, fabien.goulay@mail.wvu.edu

	Reactions	k (300K) / cm ³ s ⁻¹	Reference
1	$C + C_2H_4 \rightarrow C_3H_3 + H$	2.1×10 ⁻¹⁰	1
2	$C + C_3O_2 \rightarrow C_2 + 2CO$	2×10-10	2
3	$C + C_2O \rightarrow C2 + CO$	4×10 ⁻¹¹	By comparison with $C + O_2$ (triplet + triplet
	 	 	reaction)
4	$C + C_3H_3 \rightarrow C_4H_2 + H$	1×10 ⁻¹⁰	OSU database ³
5	$C + C_2H_3 \rightarrow C_3H_2 + H$	1×10 ⁻¹⁰	OSU database ³
6	$C_2O + H \rightarrow CH + CO$	3×10 ⁻¹¹	4-6
7	$C_2O + C_3O_2 \rightarrow C_2 + 3CO$	1×10 ⁻¹⁰	By comparison with ${}^{1}C_{2}O + NH_{3}^{7}$
8	$C_2O + C_2H_3 \rightarrow C_3H_3 + CO$	4×10 ⁻¹¹	Considering no barrier (radical + radical
	i I		reaction)
9	$C_2O + C_3H_3 \rightarrow C_4H_3 + CO$	4×10-11	Considering no barrier (radical + radical
		 	reaction)
10	$C_2O + C_2H_4 \rightarrow C_3H_4 + CO$	1×10 ⁻¹⁰	By comparison with ${}^{1}C_{2}O + NH_{3}{}^{7}$
11	$C_2O + C_3H_4 \rightarrow C_4H_4 + CO$	1×10-10	By comparison with ${}^{1}C_{2}O + NH_{3}$
12	$CH + C_3O_2 \rightarrow C_2H + 2CO$	1×10 ⁻¹⁰	Sato et al. ⁸ propose 1.0e-11 inferred from a
	i I		complex mechanism
13	$CH + C_2H_4 \rightarrow C_3H_4 + H$	2.84×10 ⁻¹⁰	9
14	$CH + C_3H_4 \rightarrow C_4H_4 + H$	4.6×10 ⁻¹⁰	10
15	$C_2H + C_2H_4 \rightarrow C_4H_4 + H$	9.9×10 ⁻¹¹	11
16	$C_2H + C_3O_2 \rightarrow HC_4O + CO$	1.0×10 ⁻¹⁰	By comparison with $C_2O + NH_3^7$
17	$C_2H + C_2O \rightarrow C_3H + CO$	4.0×10 ⁻¹⁰	Estimated by comparison with $C_2H + NO$

Table S1 Preponderant reactions expected to occur upon irradiation of a $C_3O_2 + C_2H_4$ mixture

	Reaction	k (300K) / cm ³ s ⁻¹	Reference
1	$C + C_3H_6 \rightarrow C_4H_5 + H$	1.3×10 ⁻¹⁰	12
	\rightarrow C ₃ H ₃ + CH ₃	1.3×10 ⁻¹⁰	
2	$C + C_3O_2 \rightarrow C_2 + 2CO$	2×10 ⁻¹⁰	2
3	$C + C_2O \rightarrow C_2 + CO$	4×10 ⁻¹¹	By comparison with $C + O_2$ (triplet + triplet
	i !	 	reaction)
4	$C + C_3H_3 \rightarrow C_4H_2 + H_2$	1×10 ⁻¹⁰	OSU database ³
5	$C + C_4H_5 \rightarrow C_5H_4 + H$	1×10 ⁻¹⁰	Estimated based on $C + C_3H_3$
6	$C + C_2H_3 \rightarrow C_3H_2 + H$	1×10 ⁻¹⁰	OSU database ³
7	$C + C_3H_5 \rightarrow C_4H_4 + H$	1×10 ⁻¹⁰	Estimated based on $C + C_3H_3$
8	$C + CH_3 \rightarrow C_2H_2 + H$	1×10 ⁻¹⁰	OSU database ³
9	$C_2O + H \rightarrow CH + CO$	3×10 ⁻¹¹	5,6,13
10	$C_2O + C_3O_2 \rightarrow C_2 + 3CO$	1×10 ⁻¹⁰	By comparison with ${}^{1}C_{2}O + NH_{3}$
11	$C_2O + C_3H_5 \rightarrow C_4H_5 + CO$	4×10 ⁻¹¹	Considering no barrier (radical + radical
	i !	 	reaction)
12	$C_2O + CH_3 \rightarrow C_2H_3 + CO$	4×10 ⁻¹¹	Considering no barrier (radical + radical
	 	 	reaction)
13	$C_2O + C_2H_3 \rightarrow C_3H_3 + CO$	4×10 ⁻¹¹	Considering no barrier (radical + radical
			reaction)
14	$C_2O + C_3H_3 \rightarrow C_4H_3 + CO$	4×10-11	Considering no barrier (radical + radical
		1 10 10	reaction)
15	$C_2O + C_3H_6 \rightarrow C_4H_6 + CO$	$\frac{1 \times 10^{-10}}{1 \times 10^{-10}}$	By comparison with $C_2O + NH_3$
16	$C_2O + C_4H_6 \rightarrow C_5H_6 + CO$	1×10-10	By comparison with $C_2O + NH_3$
17	$CH + C_3O_2 \rightarrow C_2H + 2CO$	1×10-10	Sato et al. ⁸ propose 1.0e-11 deduced from a
		2 10 10	complex mechanism
18	$CH + C_3H_6 \rightarrow C_4H_6 + H$	3×10^{-10}	Extrapolation to 300 K ¹⁴
	$CH + C_4H_6 \rightarrow C_5H_6 + H$	3×10-10	By comparison with $CH + C_3H_6$
20	$C_2H + C_3H_6 \rightarrow C_4H_4 + CH_3$	5×10 ⁻¹⁰	15
	\rightarrow C ₅ H ₆ + H	9×10 ⁻¹¹	
	$C_2H + C_3O_2 \rightarrow HC_4O + CO$	1.0×10^{-10}	By comparison with $C_2O + NH_3$
22	$C_2H + C_2O \rightarrow C_3H + CO$	4.0×10 ⁻¹⁰	Estimated by comparison with $C_2H + NO$

Table S2 Preponderant reactions expected to occur upon irradiation of a $C_3O_2 + C_3H_6$ mixture

References

- 1. A. Bergeat and J. C. Loison, *Phys. Chem. Chem. Phys.*, 2001, **3**, 2038-2042.
- 2. M. P. Deeyamulla and D. Husain, J. Photochem. Photobiol. A Chem., 2006, 184, 347-353.
- 3. S. S. Prasad and W. T. Huntress, Astrophysical Journal Supplement Series, 1980, 43, 1-35.
- 4. W. Bauer, K. H. Becker and R. Meuser, *Ber. Bunsen-Ges. Phys. Chem. Chem. Phys.*, 1985, **89**, 340-341.
- 5. V. H. Schmidt, R. Meuser, O. Horie, W. Bauer and K. H. Becker, *Bull. Soc. Chim. Belg.*, 1983, **92**, 655-655.
- 6. O. Horie, W. Bauer, R. Meuser, V. H. Schmidt and K. H. Becker, *Chem. Phys. Lett.*, 1983, **100**, 251-254.
- 7. J. Bourgalais, C. M., R. K. Abhinavam Kailasanathan, D. L. Osborn, K. M. Hickson, J.-C. Loison, V. Wakelam, F. Goulay and S. D. Le Picard, Under review.
- 8. K. Sato, N. Ishida, T. Kurakata, A. Iwasaki and S. Tsnuashima, *Chem. Phys.*, 1998, **237**, 195-204.
- 9. H. Thiesemann, E. P. Clifford, C. A. Taatjes and S. J. Klippenstein, *J. Phys. Chem. A*, 2001, **105**, 5393-5401.
- 10. J. E. Butler, J. W. Fleming, L. P. Goss and M. C. Lin, *Chem. Phys.*, 1981, 56, 355-365.
- 11. D. Chastaing, P. L. James, I. R. Sims and I. W. M. Smith, *J. Chem. Soc., Faraday Trans.*, 1998, **109**, 165-181.
- 12. J. C. Loison and A. Bergeat, Phys. Chem. Chem. Phys., 2004, 6, 5396-5401.
- 13. W. Bauer, K. H. Becker and R. Meuser, Ber. Bunsenges. Phys. Chem., 1985, 89, 340.
- 14. N. Daugey, P. Caubet, B. Retail, M. Costes, A. Bergeat and G. Dorthe, *Phys. Chem. Chem. Phys.*, 2005, **7**, 2921-2927.
- 15. J. Bouwman, F. Goulay, S. R. Leone and K. R. Wilson, J. Phys. Chem. A, 2012, 116, 3907-3917.