Supporting information for:

Improved conductivity of NdFeO_{3} through partial substitution of Nd

 by Ca: a theoretical studyYou Wang, ${ }^{\text {a }}$ Yun Wang, ${ }^{\text {b }}$ Wei Ren, ${ }^{\text {c Porun Liu, }}{ }^{\text {b }}$ Huijun Zhao, ${ }^{\text {b } b}$ Jun Chen, ${ }^{a}$ Jinxia Deng ${ }^{d}$ and Xianran Xing *a
a.Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China,
b.Centre for clean Environment and Energy and Griffith School of Environment, Griffith University, Gold Coast Campus, QLD

4222, Australian
c.Department of Physics, International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai

University, Shanghai 200444, China
d.Department of Chemistry, University of Science and technology Beijing, Beijing 100083, China

Fig. S1 The G-type antiferromagnetic structure of NdFeO_{3}.

Fig. S2 Three types of $\mathrm{Nd} / \mathrm{Ca}$ arrangements and their total density of states of $\mathrm{Nd}_{0.5} \mathrm{Ca}_{0.5} \mathrm{FeO}_{3}$. For clarity, we only show the arrangements of Nd and Ca from the supercell structures.

Fig. S3 The axial Fe-O bond length (\AA) for $\mathrm{Nd}_{1-\mathrm{x}} \mathrm{Ca}_{\mathrm{x}} \mathrm{FeO}_{3}$ (red) and Nd_{1-} ${ }_{x} \mathrm{Ca}_{\mathrm{x}} \mathrm{FeO}_{2.75}$ (green) ($\mathrm{x}=0.00,0.25,0.50,0.75,1.00$). See Fig. S 7 for the numbering of Fe and O ions.

Fig. S4 The equatorial $\mathrm{Fe}-\mathrm{O}$ bond length (\AA) for $\mathrm{Nd}_{1-\mathrm{x}} \mathrm{Ca}_{\mathrm{x}} \mathrm{FeO}_{3}$ (red) and Nd_{1-} ${ }_{x} \mathrm{Ca}_{\mathrm{x}} \mathrm{FeO}_{2.75}$ (green) ($\mathrm{x}=0.00,0.25,0.50,0.75,1.00$).

Fig. S5 The axial O-Fe-O bond angle (${ }^{\circ}$) for $\mathrm{Nd}_{1-\mathrm{x}} \mathrm{Ca}_{\mathrm{x}} \mathrm{FeO}_{3}$ (red) and Nd_{1-} ${ }_{x} \mathrm{Ca}_{\mathrm{x}} \mathrm{FeO}_{2.75}$ (green) ($\mathrm{x}=0.00,0.25,0.50,0.75,1.00$).

Fig. S6 The equatorial O-Fe-O bond angle $\left({ }^{\circ}\right)$ for $\mathrm{Nd}_{1-\mathrm{x}} \mathrm{Ca}_{\mathrm{x}} \mathrm{FeO}_{3}$ (red) and Nd_{1-} ${ }_{x} \mathrm{Ca}_{\mathrm{x}} \mathrm{FeO}_{2.75}$ (green) ($\mathrm{x}=0.00,0.25,0.50,0.75,1.00$).

Fig. S7 Partial density of states (PDOS) of $\mathrm{Nd}_{1-\mathrm{x}} \mathrm{Ca}_{\mathrm{x}} \mathrm{FeO}_{3}(\mathrm{x}=0.00,0.25,0.50,0.75$ or $1.00, \delta=0.00$ or 0.25).

Fig. S8 The PDOS images of $\mathrm{O} 2 \mathrm{p}, \mathrm{Fe} \mathrm{t}_{2 \mathrm{~g}}$ and $\mathrm{Fe} \mathrm{e}_{\mathrm{g}}$ are shown for the structures of $\mathrm{Nd}_{1-\mathrm{x}} \mathrm{Ca}_{\mathrm{x}} \mathrm{FeO}_{3}(\mathrm{x}=0.00,0.25,0.50,0.75$ and 1.00).
$\bigcirc \mathrm{Nd}$

- Fe
- O

Fig. S9 Top views and side views of $\mathrm{NdFeO}_{2.75}$. Oxygen vacancies formed along axial Fe-O-Fe bond (lower) and equatorial (upper). Structures are visualized with VESTA.

