## Combined Theoretical and Time-Resolved Photoluminescence Investigations of [Mo<sub>6</sub>Br<sup>i</sup><sub>8</sub>Br<sup>a</sup><sub>6</sub>]<sup>2-</sup> Metal Cluster Units: Evidences of dual emission

Karine Costuas,\*<sup>a</sup> Alexandre Garreau,<sup>b</sup> Alain Bulou,<sup>c</sup> Bruno Fontaine,<sup>a</sup> Jérôme Cuny,<sup>a,d</sup> Régis Gautier,<sup>a</sup> Michel Mortier,<sup>e</sup> Yann Molard,<sup>a</sup> Jean Luc Duvail,<sup>b</sup> Eric Faulques,<sup>b</sup>\* Stéphane Cordier<sup>a</sup>\*

<sup>a</sup> Institut des Sciences Chimiques de Rennes, CNRS - ENSC Rennes - Université de Rennes, France. Email: kcostuas@univ-rennes1.fr; stephane.cordier@univ-rennes1.fr

<sup>b</sup> Institut des Matériaux Jean Rouxel, Université de Nantes, CNRS, France. Email: eric.faulques@cnrs-imn.fr

<sup>c</sup> Institut des Molécules et Matériaux du Mans/PEC, Université du Maine, CNRS, France

<sup>d</sup> Laboratoire de Chimie et Physique Quantiques, IRSAMC, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 4, France

<sup>e</sup> Institut de Recherche de Chimie Paris, Chimie ParisTech, CNRS, France

## **Supporting Information**

| Fig. S1 and S2 Absorption and emission spectra of $(Cs_2)[Mo_6Br_8Br_6^a]$ in solution                                                                                                               | 2          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Table S1 Fit parameters of the emission spectra in Fig. 2                                                                                                                                            | 3          |
| Fig. S3 Excitation PL spectra                                                                                                                                                                        | 3          |
| Fig. S4 Correction curves for TRPL measurements                                                                                                                                                      | 3          |
| <b>Fig. S5</b> Simulated absorption spectra of $[Mo_6Br_8^iBr_6^a]^{2-}$                                                                                                                             | 4          |
| Table S2 Main distances of experimental and DFT optimized [Mo <sub>6</sub> Br <sup>i</sup> <sub>8</sub> Br <sup>a</sup> <sub>6</sub> ] <sup>2-</sup> units                                           | 4          |
| <b>Table S3</b> TD-DFT singlet-singlet electronic excitations calculated for $[Mo_6Br_8^iBr_6^a]^{2-}$ in $O_h$ -DFT optimized geometry and its experimental $(TBA)_2[Mo_6Br_8^iBr_6^a]$ arrangement | 1 its<br>5 |
| <b>Table S4</b> TD-DFT singlet-triplet electronic excitations calculated for $[Mo_6Br_8^iBr_6^a]^{2-}$ in $O_h$ -DFT optimized geometry and its experimental $(TBA)_2[Mo_6Br_8^iBr_6^a]$ arrangement | its<br>11  |
| <b>Fig. S6</b> TD-DFT simulated absorption spectra of $T_1$ , $T_2$ , $T_3$ , $T_4$                                                                                                                  | 13         |
| <b>Fig. S7</b> Isocontour plots of the spin-density of $T_1$ , $T_2$ , $T_3$ , $T_4$                                                                                                                 | 14         |
| <b>Table S5</b> Mo Mulliken atomic spin-densities of $T_1$ , $T_2$ , $T_3$ , $T_4$                                                                                                                   | 14         |
| Table S6 Cartesian coordinates of the optimized transition state                                                                                                                                     | 14         |



**Fig. S1** Absorption spectra of  $(Cs_2)[Mo_6Br_8Br_6]$  in acetonitrile recorded at room temperature (A) in nm, (B) in cm<sup>-1</sup> (concentration: 2.10<sup>-6</sup> mol.L<sup>-1</sup>). At the same concentration,  $(TBA)_2[Mo_6Br_8Br_6]$  and  $(Cs)_2[Mo_6Br_8Br_6]$  spectrum are identical in the UV-vis region. Changes in concentration only affect the absorbance.



**Fig. S2** Emission spectra collected at 298 K excited with  $\lambda_{exc} = 355$  nm radiation of (A) (Cs<sub>2</sub>)[Mo<sub>6</sub>Br<sup>i</sup><sub>8</sub>Br<sup>a</sup><sub>6</sub>] dissolved in acetone, (B) (Cs<sub>2</sub>)[Mo<sub>6</sub>Br<sup>i</sup><sub>8</sub>Br<sup>a</sup><sub>6</sub>] dissolved in acetonitrile, (C) of (TBA)<sub>2</sub>[Mo<sub>6</sub>Br<sup>i</sup><sub>8</sub>Br<sup>a</sup><sub>6</sub>] dissolved in acetone, (D) (TBA)<sub>2</sub>[Mo<sub>6</sub>Br<sup>i</sup><sub>8</sub>Br<sup>a</sup><sub>6</sub>] dissolved in acetonitrile (concentration: 2.10<sup>-6</sup> mol.L<sup>-1</sup>). The spectra were fitted with Gaussian functions (red and green lines). The cumulative fit is plotted in blue. See Table S1 for details.

**Tab. S1** Characteristic parameters of the spectra of Fig S2 fitted using functions of the general formula  $y = y_0 + (A/(w \times \text{sqrt}(\pi/2))) \times \exp(-2 \times ((x-x_c)/w)^2)$ . Wavelengths in nm and FWMH in cm<sup>-1</sup> of the two-component **1** and **2** are given for (A) (Cs<sub>2</sub>)[Mo<sub>6</sub>Br<sup>i</sup><sub>8</sub>Br<sup>a</sup><sub>6</sub>] dissolved in acetone, (B) (Cs<sub>2</sub>)[Mo<sub>6</sub>Br<sup>i</sup><sub>8</sub>Br<sup>a</sup><sub>6</sub>] dissolved in acetonitrile, (C) of (TBA)<sub>2</sub>[Mo<sub>6</sub>Br<sup>i</sup><sub>8</sub>Br<sup>a</sup><sub>6</sub>] dissolved in acetonitrile.

|     | $\lambda_1$ | FWMH <sub>1</sub> | $\lambda_2$ | FWMH <sub>2</sub> | $\mathbb{R}^2$ |
|-----|-------------|-------------------|-------------|-------------------|----------------|
| (A) | 728.9       | 3310              | 808.7       | 1442              | 0.99828        |
| (B) | 729.5       | 3318              | 809.5       | 1393              | 0.99766        |
| (C) | 731.1       | 3301              | 810.0       | 1392              | 0.99837        |
| (D) | 730.0       | 3384              | 807.0       | 1366              | 0.99681        |



**Fig. S3** Normalized excitation spectra extracted from measurements presented in Fig. 3 for (A)  $(Cs_2)[Mo_6Br_8^iBr_6^a]$  for an emission wavelength at 722 nm (red circles) and 857 nm (black circles) (B)  $(TBA)_2[Mo_6Br_8^iBr_6^a]$  for an emission wavelength at 720 nm (red circles) and 850 nm (black circles).



Fig S4. Detector response corrected and uncorrected TRPL measurements (streak camera).



**Fig. S5** TD-DFT simulated absorption spectra of  $[Mo_6Br^i_8Br^a_6]^{2-}$  (oscillator strength versus wavelengths) in its experimental  $(TBA)_2[Mo_6Br^i_8Br^a_6]$  arrangement obtained from data given in Table S1B.

**Table S2** Mo-Mo, Mo-Br<sup>i</sup>, and Mo-Br<sup>a</sup> distances (Å, averaged and range) of experimental and DFT optimized  $[Mo_6Br^i_8Br^a_6]^2$ -units in  $O_h$  symmetry and without symmetry constraint starting from the X-Ray structure. Experimental values are taken from  $(TBA)_2[Mo_6Br^i_8Br^a_6]$  and  $(Cs)_2[Mo_6Br^i_8Br^a_6]$  from ref. 12.

|                    | $(Cs)_2$                   | $(TBA)_2$       | $(TBA)_2$                         |                      |
|--------------------|----------------------------|-----------------|-----------------------------------|----------------------|
|                    | $[Mo_6Br_{14}]$            | $[Mo_6Br_{14}]$ | $[Mo_6Br_{14}]$                   | $[Mo_6Br_{14}]^{2-}$ |
|                    | Exp.                       | Exp.            | Periodic DFT                      | $DFT(O_h)$           |
|                    |                            | 2.622 (× 2)     | 2.631 (× 2)                       |                      |
|                    | 2610(x, 2)                 | 2.630 (× 2)     | 2.635 (× 2)                       |                      |
| Mo Mo              | 2.019(X 3)<br>2.640(X 6)   | 2.632 (× 2)     | 2.636 (× 2)                       | 2 655                |
| 1010-1010          | 2.040 (x 0)<br>2.641 (x 2) | 2.635 (× 2)     | 2.638 (× 2)                       | 2.035                |
|                    | 2.041(X J)                 | 2.627 (× 2)     | 2.640 (× 2)                       |                      |
|                    |                            | 2.635 (× 2)     | 2.643 (× 2)                       |                      |
| average            | 2.635                      | 2.630           | 2.638                             | 2.655                |
|                    |                            | 2.582 (× 2)     |                                   |                      |
|                    |                            | 2.592 (× 2)     | 2 605 (× 2)                       |                      |
|                    |                            | 2.602 (× 2)     | $2.005 (\times 2)$<br>2.615 (× 4) |                      |
|                    |                            | 2.606 (× 2)     | $2.615 (\times 1)$<br>2.616 (× 2) |                      |
|                    | 2.584 (x 6)                | 2.593 (× 2)     | $2.618(\times 2)$                 |                      |
| Mo-Br <sup>i</sup> | 2.594 (x 6)                | 2.596 (× 2)     | 2.610(2)                          | 2.642                |
| MIC DI             | 2.607 (x 6)                | 2.597 (× 2)     | 2.619(2)                          | 2.012                |
|                    | 2.620 (x 6)                | 2.600 (× 2)     | $2.623(\times 2)$                 |                      |
|                    |                            | 2.593 (× 2)     | $2.628(\times 4)$                 |                      |
|                    |                            | 2.593 (× 2)     | 2.635 (× 2)                       |                      |
|                    |                            | 2.593 (× 2)     | 2.055 ( 2)                        |                      |
|                    |                            | 2.601 (× 2)     |                                   |                      |
| average            | 2.601                      | 2.596           | 2.620                             | 2.642                |
| _                  |                            | 2.582 (× 2)     | $2.600 \times 2$                  |                      |
| Mo-Br <sup>a</sup> | 2.600 (x 6)                | 2.585 (× 2)     | $2.608 \times 2$                  | 2.653                |
|                    |                            | 2.579 (× 2)     | $2.610 \times 2$                  |                      |
| average            | 2.600                      | 2.582           | 2.606                             | 2.653                |

**Table S3** TD-DFT singlet-singlet electronic excitations in eV calculated for  $[Mo_6Br_8^iBr_6^a]^2$ (A) in its  $O_h$ -DFT optimized geometry (symmetrically degenerated energies not reported) and (B) its experimental  $(TBA)_2[Mo_6Br_8^iBr_6^a]$  arrangement  $(CH_2Cl_2$  solvent effect taken into account by the COSMO formalism)

| (A)        |                        |                 |        | 3.140 | 0        | $A_{1g}$        |
|------------|------------------------|-----------------|--------|-------|----------|-----------------|
| Excitation | Oscillator<br>Strength | Symmetry N      | lature | 3.144 | 0        | $A_{2u}$        |
| 2.492      | 0                      | T <sub>1g</sub> |        | 3.150 | 0        | $T_{2g}$        |
| 2.498      | 0                      | T <sub>2a</sub> |        | 3.151 | 4.04E-03 | T <sub>1u</sub> |
| 2.519      | 0                      | E,              |        | 3.160 | 0        | $T_{2g}$        |
| 2.520      | 0                      | A <sub>1u</sub> |        | 3.164 | 0        | $T_{2u}$        |
| 2.565      | 0                      | A <sub>2u</sub> |        | 3.169 | 0        | $E_{g}$         |
| 2.678      | 0                      | T <sub>2u</sub> |        | 3.183 | 8.68E-05 | $T_{1u}$        |
| 2.689      | 0                      | A <sub>1u</sub> |        | 3.207 | 0        | $E_{u}$         |
| 2.694      | 0                      | Eu              |        | 3.217 | 0        | $T_{1g}$        |
| 2.707      | 3.58E-03               | T <sub>1u</sub> |        | 3.223 | 0        | $A_{1g}$        |
| 2.715      | 0                      | T <sub>2g</sub> |        | 3.234 | 0        | $A_{2u}$        |
| 2.722      | 0                      | T <sub>1g</sub> |        | 3.236 | 0        | $T_{2u}$        |
| 2.783      | 0                      | T <sub>1g</sub> |        | 3.239 | 0        | $T_{2u}$        |
| 2.789      | 0                      | $T_{2g}$        |        | 3.243 | 6.83E-04 | $T_{1u}$        |
| 2.809      | 0                      | A <sub>2g</sub> |        | 3.252 | 0        | $T_{2u}$        |
| 2.819      | 9.39E-03               | T <sub>1u</sub> |        | 3.256 | 1.68E-03 | $T_{1u}$        |
| 2.838      | 0                      | $T_{2g}$        |        | 3.262 | 0        | $A_{1g} \\$     |
| 2.845      | 0                      | $T_{1g}$        |        | 3.267 | 0        | $E_{g}$         |
| 2.851      | 0                      | Eg              |        | 3.277 | 0        | $T_{2g}$        |
| 2.875      | 0                      | $T_{2u}$        |        | 3.295 | 0        | $A_{2g}$        |
| 2.892      | 0                      | $T_{1g}$        |        | 3.344 | 4.93E-04 | $T_{1u}$        |
| 2.916      | 0                      | Eu              |        | 3.354 | 0        | Eu              |
| 2.924      | 4.36E-05               | T <sub>1u</sub> |        | 3.366 | 0        | $E_{g}$         |
| 2.935      | 0                      | $T_{2u}$        |        | 3.376 | 7.44E-03 | $T_{1u}$        |
| 3.023      | 0                      | Eu              |        | 3.408 | 0        | $T_{1g}$        |
| 3.037      | 0                      | A <sub>2u</sub> |        | 3.417 | 0        | $A_{2g}$        |
| 3.047      | 0                      | T <sub>2u</sub> |        | 3.422 | 0        | $T_{2g}$        |
| 3.050      | 1.05E-03               | T <sub>1u</sub> |        | 3.431 | 0        | $A_{2g}$        |
| 3.060      | 0                      | T <sub>1g</sub> |        | 3.432 | 0        | $T_{1g}$        |
| 3.063      | 0                      | T <sub>2g</sub> |        | 3.442 | 0        | $A_{1u}$        |
| 3.074      | 0                      | Eg              |        | 3.447 | 0        | $T_{2g}$        |
| 3.076      | 2.60E-03               | T <sub>1u</sub> |        | 3.450 | 0        | $T_{2u} \\$     |
| 3.088      | 0                      | $T_{2u}$        |        | 3.453 | 0        | $E_{g}$         |
| 3.097      | 0                      | Eu              |        | 3.461 | 0        | Eu              |
| 3.109      | 0                      | A <sub>1g</sub> |        | 3.471 | 0        | $T_{2u}$        |
| 3.116      | 0                      | Eg              |        | 3.472 | 1.77E-04 | $T_{1u}$        |
| 3.125      | 0                      | T <sub>1g</sub> |        | 3.480 | 0        | $A_{1u}$        |
| 3.125      | 0                      | T <sub>2g</sub> |        | 3.492 | 0        | $E_{g}$         |
| 3.140      | 0                      | T <sub>1g</sub> |        | 3.528 | 0        | $A_{1u}$        |
|            |                        |                 |        | 3.531 | 0        | $T_{1g}$        |

| 3.532 | 0        | Eu              | 3.983          | 0        | T <sub>2u</sub>       |       |
|-------|----------|-----------------|----------------|----------|-----------------------|-------|
| 3.532 | 0        | Eu              | 3.989          | 0        | A <sub>2g</sub>       |       |
| 3.537 | 0        | T <sub>2u</sub> |                |          |                       | Mo-   |
| 3.541 | 3.57E-04 | T <sub>1u</sub> | 4.031          | 0.162    | T <sub>1u</sub>       | Mo to |
| 3.546 | 0        | T <sub>1g</sub> | 4 046          | 0        | т.                    | Mo*   |
| 3.546 | 0        | T <sub>2u</sub> | 4.040          | 0        | r <sub>1g</sub><br>⊏  |       |
| 3.547 | 0        | T <sub>2g</sub> | 4.078          | 0        | ∟g<br>⊑               |       |
| 3.552 | 0        | Eu              | 4.086          | 0        | ∟ <sub>g</sub><br>⊑   |       |
| 3.565 | 1.97E-04 | T <sub>1u</sub> | 4.000          | 0        | Lu<br>T.              |       |
| 3.568 | 0        | T <sub>2u</sub> | 4.095          | 0        | ι <sub>1g</sub>       |       |
| 3.580 | 0        | T <sub>2g</sub> | 4.000          | 0        | л <sub>2и</sub><br>Т. |       |
| 3.619 | 0        | A <sub>2g</sub> | 4 118          | 0        | T <sub>2g</sub>       |       |
| 3.627 | 0        | T <sub>2g</sub> | 4 123          | 3 15E-02 | T.                    |       |
| 3.642 | 0        | T <sub>2u</sub> | 4 125          | 0        | Δ.                    |       |
| 3.642 | 0        | T <sub>1g</sub> | 4 135          | 0        | F                     |       |
| 3.656 | 9.72E-04 | T <sub>1u</sub> | 4.133          | 0        | ∟g<br>F               |       |
| 3.659 | 0        | T <sub>1g</sub> | 4 168          | 0        | Lu<br>T.              |       |
| 3.662 | 0        | T <sub>2g</sub> | 4 176          | 5 33E-03 | т <sub>20</sub><br>Т. |       |
| 3.755 | 0        | A <sub>2u</sub> | 4.170          | 0        | Δ.                    |       |
| 3.804 | 0        | T <sub>2u</sub> | 4 204          | 0        | Λ <sub>2u</sub><br>Τ. |       |
| 3.805 | 0        | Eu              | 4 214          | 0        | T <sub>1g</sub>       |       |
| 3.819 | 1.14E-03 | T <sub>1u</sub> | 4 225          | 0        | т <sub>2g</sub>       |       |
| 3.834 | 0        | T <sub>2g</sub> | 4 252          | 0        | T .                   |       |
| 3.834 | 0        | A <sub>2u</sub> | 4 268          | 0        | r <sub>1g</sub><br>⊏  |       |
| 3.842 | 0        | T <sub>2u</sub> | 4.200          | 0        | Lu<br>A               |       |
| 3.845 | 0        | Eg              | 4.278          | 0        |                       |       |
| 3.847 | 4.11E-03 | T <sub>1u</sub> | 4 285          | 3 16E-04 | Lg<br>T.              |       |
| 3.849 | 0        | A <sub>1u</sub> | 4.203          | 0        | T T                   |       |
| 3.852 | 0        | T <sub>1g</sub> | 4.295          | 1 345 02 | т <sub>2и</sub>       |       |
| 3.853 | 0        | Eu              | 4.303          | 0        | ∎ <sub>1u</sub>       |       |
| 3.853 | 0        | Eu              | 4.321          | 0        | А <sub>2u</sub><br>т  |       |
| 3.864 | 0        | T <sub>2g</sub> | 4.321          | 0        | 1 <sub>2g</sub>       |       |
| 3.897 | 0        | T <sub>2u</sub> | 4.000          |          | A <sub>1g</sub>       |       |
| 3.900 | 0        | T <sub>2g</sub> | 4.345          | 1 01E 02 | T                     |       |
| 3.901 | 0        | Eg              | 4.303          | 1.012-03 | T T                   |       |
| 3.905 | 1.43E-03 | T <sub>1u</sub> | 4.379          | 1.23E-02 | т                     |       |
| 3.910 | 0        | T <sub>1g</sub> | 4.303          | 0        |                       |       |
| 3.928 | 0        | T <sub>2u</sub> | 4.300          | 0        | ⊏ <sub>g</sub>        |       |
| 3.937 | 0        | T <sub>1g</sub> | 4.413          | 0        | A <sub>1u</sub>       |       |
| 3.941 | 0        | T <sub>2g</sub> | 4.421          | 0        | Г <sub>2g</sub>       |       |
| 3.945 | 0        | A <sub>2g</sub> | 4.440<br>1 155 | 0        | Eu<br>T.              |       |
| 3.961 | 0        | T <sub>1g</sub> | 4.400          | 0        | l 1g<br>∧             |       |
| 3.965 | 0        | A <sub>1g</sub> | 4.400          | 0        | л <sub>2g</sub>       |       |
| 3.974 | 0        | Eg              | 4.403          | 0        | т<br>Т                |       |
| 3.976 | 0        | T <sub>2g</sub> | 4.405          | 0        | I <sub>1g</sub>       |       |
| 3.982 | 0        | T <sub>1g</sub> | 4.467          | U        | I <sub>2g</sub>       |       |
|       |          |                 | 4.500          | 2.14E-02 | l <sub>1u</sub>       |       |

|                                                                                                                                                                                                  | 0                                                                                                                                                                         | A <sub>1u</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.147                                                                                                                                                                                              | 0                                                                                                                                                 | $E_{g}$                                                                                                                                                                                                                                  |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.508                                                                                                                                                                                            | 0                                                                                                                                                                         | Eg                                                                                                                                                                                                                                                                                                                                                 |                        | 5.147                                                                                                                                                                                              | 0                                                                                                                                                 | Eg                                                                                                                                                                                                                                       |    |
| 4.511                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>1g</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.159                                                                                                                                                                                              | 0                                                                                                                                                 | $T_{2u}$                                                                                                                                                                                                                                 |    |
| 4.518                                                                                                                                                                                            | 0                                                                                                                                                                         | A <sub>1u</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.168                                                                                                                                                                                              | 0                                                                                                                                                 | $T_{2g}$                                                                                                                                                                                                                                 |    |
| 4.522                                                                                                                                                                                            | 0                                                                                                                                                                         | Eu                                                                                                                                                                                                                                                                                                                                                 |                        | 5.193                                                                                                                                                                                              | 0                                                                                                                                                 | Eg                                                                                                                                                                                                                                       |    |
| 4.529                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>2u</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.199                                                                                                                                                                                              | 0                                                                                                                                                 | A <sub>2g</sub>                                                                                                                                                                                                                          |    |
| 4.535                                                                                                                                                                                            | 0                                                                                                                                                                         | A <sub>2u</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.219                                                                                                                                                                                              | 0                                                                                                                                                 | $T_{2u}$                                                                                                                                                                                                                                 |    |
| 4.556                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>2g</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.224                                                                                                                                                                                              | 0                                                                                                                                                 | $T_{1g}$                                                                                                                                                                                                                                 |    |
| 4.570                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>2g</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.227                                                                                                                                                                                              | 0                                                                                                                                                 | $A_{2g}$                                                                                                                                                                                                                                 |    |
| 4.577                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>1g</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.236                                                                                                                                                                                              | 0                                                                                                                                                 | $T_{2g}$                                                                                                                                                                                                                                 |    |
| 4.579                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>2u</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.241                                                                                                                                                                                              | 0                                                                                                                                                 | A <sub>1u</sub>                                                                                                                                                                                                                          |    |
| 4.588                                                                                                                                                                                            | 0                                                                                                                                                                         | Eu                                                                                                                                                                                                                                                                                                                                                 |                        | 5.256                                                                                                                                                                                              | 0                                                                                                                                                 | Eu                                                                                                                                                                                                                                       |    |
| 4.615                                                                                                                                                                                            | 0                                                                                                                                                                         | A <sub>2g</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.259                                                                                                                                                                                              | 0                                                                                                                                                 | $T_{2u}$                                                                                                                                                                                                                                 |    |
| 4.618                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>2u</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.267                                                                                                                                                                                              | 5.75E-04                                                                                                                                          | T <sub>1u</sub>                                                                                                                                                                                                                          |    |
| 4.623                                                                                                                                                                                            | 1.69E-02                                                                                                                                                                  | T <sub>1u</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.282                                                                                                                                                                                              | 0                                                                                                                                                 | T <sub>2u</sub>                                                                                                                                                                                                                          |    |
| 4.641                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>1g</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.300                                                                                                                                                                                              | 0                                                                                                                                                 | Eg                                                                                                                                                                                                                                       |    |
| 4.672                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>2g</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.336                                                                                                                                                                                              | 0                                                                                                                                                 | T <sub>2u</sub>                                                                                                                                                                                                                          |    |
| 4.714                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>1g</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.348                                                                                                                                                                                              | 0                                                                                                                                                 | $T_{2g}$                                                                                                                                                                                                                                 |    |
| 4.726                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>1g</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.359                                                                                                                                                                                              | 0                                                                                                                                                 | $T_{1g}$                                                                                                                                                                                                                                 |    |
| 4.742                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>2g</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.363                                                                                                                                                                                              | 0                                                                                                                                                 | $T_{2g}$                                                                                                                                                                                                                                 |    |
| 4.818                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>2u</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.377                                                                                                                                                                                              | 0                                                                                                                                                 | A <sub>1g</sub>                                                                                                                                                                                                                          |    |
| 4.831                                                                                                                                                                                            | 4.52E-03                                                                                                                                                                  | T₁u                                                                                                                                                                                                                                                                                                                                                |                        | 5 393                                                                                                                                                                                              | 0 169                                                                                                                                             | т                                                                                                                                                                                                                                        | M  |
| 4.834                                                                                                                                                                                            | 0                                                                                                                                                                         | T <sub>2u</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.302                                                                                                                                                                                              | 0.109                                                                                                                                             | I 1u                                                                                                                                                                                                                                     | Br |
| 4.850                                                                                                                                                                                            | 0                                                                                                                                                                         | A <sub>1g</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.385                                                                                                                                                                                              | 0                                                                                                                                                 | Eg                                                                                                                                                                                                                                       |    |
| 4.858                                                                                                                                                                                            | 0                                                                                                                                                                         | Eu                                                                                                                                                                                                                                                                                                                                                 |                        | 5.386                                                                                                                                                                                              | 2.63E-02                                                                                                                                          | T <sub>1u</sub>                                                                                                                                                                                                                          |    |
|                                                                                                                                                                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                                                                                                                                                    |                                                                                                                                                   |                                                                                                                                                                                                                                          |    |
| 4.884                                                                                                                                                                                            | 0                                                                                                                                                                         | A <sub>2u</sub>                                                                                                                                                                                                                                                                                                                                    |                        | 5.398                                                                                                                                                                                              | 0                                                                                                                                                 | $A_{2g}$                                                                                                                                                                                                                                 |    |
| 4.884<br>4.918                                                                                                                                                                                   | 0<br>0                                                                                                                                                                    | A <sub>2u</sub><br>E <sub>g</sub>                                                                                                                                                                                                                                                                                                                  |                        | 5.398<br>5.410                                                                                                                                                                                     | 0<br>0                                                                                                                                            | A <sub>2g</sub><br>T <sub>1g</sub>                                                                                                                                                                                                       |    |
| 4.884<br>4.918<br>4.927                                                                                                                                                                          | 0<br>0<br>0                                                                                                                                                               | A <sub>2u</sub><br>E <sub>g</sub><br>T <sub>2g</sub>                                                                                                                                                                                                                                                                                               |                        | 5.398<br>5.410<br>5.420                                                                                                                                                                            | 0<br>0<br>0                                                                                                                                       | A <sub>2g</sub><br>T <sub>1g</sub><br>E <sub>g</sub>                                                                                                                                                                                     |    |
| 4.884<br>4.918<br>4.927<br>4.928                                                                                                                                                                 | 0<br>0<br>0<br>0                                                                                                                                                          | A <sub>2u</sub><br>E <sub>g</sub><br>T <sub>2g</sub><br>T <sub>1g</sub>                                                                                                                                                                                                                                                                            |                        | 5.398<br>5.410<br>5.420<br>5.423                                                                                                                                                                   | 0<br>0<br>0<br>0                                                                                                                                  | $\begin{array}{l} A_{2g} \\ T_{1g} \\ E_{g} \\ T_{2g} \end{array}$                                                                                                                                                                       |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928                                                                                                                                                        | 0<br>0<br>0<br>0                                                                                                                                                          | $A_{2u}$<br>$E_g$<br>$T_{2g}$<br>$T_{1g}$<br>$E_u$                                                                                                                                                                                                                                                                                                 |                        | 5.398<br>5.410<br>5.420<br>5.423<br>5.446                                                                                                                                                          | 0<br>0<br>0<br>0                                                                                                                                  | $\begin{array}{c} A_{2g} \\ T_{1g} \\ E_{g} \\ T_{2g} \\ A_{2u} \end{array}$                                                                                                                                                             |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928                                                                                                                                                        | 0<br>0<br>0<br>0<br>0                                                                                                                                                     | A <sub>2u</sub><br>E <sub>g</sub><br>T <sub>2g</sub><br>T <sub>1g</sub><br>E <sub>u</sub>                                                                                                                                                                                                                                                          | Mo-Br                  | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448                                                                                                                                                 | 0<br>0<br>0<br>0<br>0                                                                                                                             | $\begin{array}{c} A_{2g} \\ T_{1g} \\ E_{g} \\ T_{2g} \\ A_{2u} \\ T_{2u} \end{array}$                                                                                                                                                   |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br><b>4.988</b>                                                                                                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.238                                                                                                                                  | Α <sub>2u</sub><br>Eg<br>T <sub>2g</sub><br>T <sub>1g</sub><br>E <sub>u</sub><br><b>Τ<sub>1u</sub></b>                                                                                                                                                                                                                                             | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.450                                                                                                                                        | 0<br>0<br>0<br>0<br>0<br>0                                                                                                                        | $A_{2g}$<br>$T_{1g}$<br>$E_{g}$<br>$T_{2g}$<br>$A_{2u}$<br>$T_{2u}$<br>$E_{u}$                                                                                                                                                           |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br><b>4.988</b><br>5.008                                                                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0.238<br>0                                                                                                                                  | $A_{2u}$<br>$E_{g}$<br>$T_{2g}$<br>$T_{1g}$<br>$E_{u}$<br>$T_{1u}$<br>$T_{1g}$                                                                                                                                                                                                                                                                     | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.450<br>5.454                                                                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                              | $A_{2g}$<br>$T_{1g}$<br>$E_{g}$<br>$T_{2g}$<br>$A_{2u}$<br>$T_{2u}$<br>$E_{u}$<br>$T_{1g}$                                                                                                                                               |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br><b>4.928</b><br><b>4.988</b><br>5.008<br>5.011                                                                                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0.238<br>0<br>0                                                                                                                        | A <sub>2u</sub><br>E <sub>g</sub><br>T <sub>2g</sub><br>T <sub>1g</sub><br>E <sub>u</sub><br>T <sub>1u</sub><br>T <sub>1g</sub><br>A <sub>2g</sub>                                                                                                                                                                                                 | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.448<br>5.450<br>5.454<br>5.465                                                                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>5.85E-03                                                                                                  | $A_{2g}$<br>$T_{1g}$<br>$E_{g}$<br>$T_{2g}$<br>$A_{2u}$<br>$T_{2u}$<br>$E_{u}$<br>$T_{1g}$<br>$T_{1u}$                                                                                                                                   |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br><b>4.988</b><br>5.008<br>5.011<br>5.012                                                                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0.238<br>0<br>0<br>0                                                                                                                        | $A_{2u}$<br>$E_{g}$<br>$T_{2g}$<br>$T_{1g}$<br>$E_{u}$<br>$T_{1u}$<br>$T_{1g}$<br>$A_{2g}$<br>$T_{2g}$                                                                                                                                                                                                                                             | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.450<br>5.454<br>5.454<br>5.465<br>5.482                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>5.85E-03<br>8.92E-03                                                                                      | $A_{2g}$<br>$T_{1g}$<br>$E_{g}$<br>$T_{2g}$<br>$A_{2u}$<br>$T_{2u}$<br>$E_{u}$<br>$T_{1g}$<br>$T_{1u}$<br>$T_{1u}$                                                                                                                       |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br><b>4.988</b><br>5.008<br>5.011<br>5.012<br>5.014                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0.238<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                        | $A_{2u}$<br>$E_{g}$<br>$T_{2g}$<br>$T_{1g}$<br>$E_{u}$<br>$T_{1u}$<br>$T_{1g}$<br>$A_{2g}$<br>$T_{2g}$<br>$T_{1u}$                                                                                                                                                                                                                                 | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.450<br>5.454<br>5.454<br>5.465<br>5.482<br>5.496                                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>5.85E-03<br>8.92E-03<br>0                                                                                      | $A_{2g}$<br>$T_{1g}$<br>$E_{g}$<br>$A_{2u}$<br>$T_{2u}$<br>$E_{u}$<br>$T_{1g}$<br>$T_{1u}$<br>$A_{1u}$                                                                                                                                   |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br><b>4.988</b><br>5.008<br>5.011<br>5.012<br>5.014<br>5.033                                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0.238<br>0<br>0<br>0<br>0<br>0<br>0<br>3.65E-02<br>0                                                                                        | $A_{2u}$<br>$E_{g}$<br>$T_{2g}$<br>$T_{1g}$<br>$E_{u}$<br>$T_{1u}$<br>$T_{1g}$<br>$A_{2g}$<br>$T_{2g}$<br>$T_{1u}$<br>$T_{2u}$                                                                                                                                                                                                                     | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.450<br>5.454<br>5.455<br>5.465<br>5.482<br>5.482<br>5.496<br>5.511                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>5.85E-03<br>8.92E-03<br>0<br>0                                                                                 | $A_{2g}$<br>$T_{1g}$<br>$E_{g}$<br>$A_{2u}$<br>$T_{2u}$<br>$E_{u}$<br>$T_{1g}$<br>$T_{1u}$<br>$T_{1u}$<br>$A_{1u}$<br>$T_{2u}$                                                                                                           |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br><b>4.988</b><br>5.008<br>5.011<br>5.012<br>5.014<br>5.033<br>5.046                                                                                  | 0<br>0<br>0<br>0<br>0<br>0.238<br>0<br>0<br>0<br>3.65E-02<br>0<br>0<br>5.96E-02                                                                                           | A <sub>2u</sub><br>E <sub>g</sub><br>T <sub>2g</sub><br>T <sub>1g</sub><br>E <sub>u</sub><br>T <sub>1g</sub><br>A <sub>2g</sub><br>T <sub>2g</sub><br>T <sub>1u</sub><br>T <sub>2u</sub><br>T <sub>1u</sub>                                                                                                                                        | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.450<br>5.454<br>5.465<br>5.465<br>5.482<br>5.496<br>5.511<br>5.511                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>5.85E-03<br>8.92E-03<br>0<br>0<br>0                                                                       | $\begin{array}{c} A_{2g} \\ T_{1g} \\ E_{g} \\ T_{2g} \\ A_{2u} \\ T_{2u} \\ E_{u} \\ T_{1g} \\ T_{1u} \\ T_{1u} \\ A_{1u} \\ T_{2u} \\ E_{g} \end{array}$                                                                               |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br><b>4.988</b><br>5.008<br>5.011<br>5.012<br>5.014<br>5.033<br>5.046<br>5.049                                                                         | 0<br>0<br>0<br>0<br>0<br>0.238<br>0<br>0<br>0<br>3.65E-02<br>0<br>5.96E-02<br>0                                                                                           | $A_{2u}$<br>$E_{g}$<br>$T_{2g}$<br>$T_{1g}$<br>$E_{u}$<br>$T_{1u}$<br>$T_{1g}$<br>$A_{2g}$<br>$T_{2g}$<br>$T_{1u}$<br>$T_{2u}$<br>$T_{1u}$<br>$E_{2}$                                                                                                                                                                                              | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.450<br>5.454<br>5.465<br>5.465<br>5.482<br>5.496<br>5.511<br>5.511<br>5.515                                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>5.85E-03<br>8.92E-03<br>0<br>0<br>0                                                                            | $A_{2g}$<br>$T_{1g}$<br>$E_{g}$<br>$T_{2g}$<br>$A_{2u}$<br>$T_{2u}$<br>$E_{u}$<br>$T_{1g}$<br>$T_{1u}$<br>$T_{1u}$<br>$A_{1u}$<br>$T_{2u}$<br>$E_{g}$<br>$E_{u}$                                                                         |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br><b>4.988</b><br>5.008<br>5.011<br>5.012<br>5.014<br>5.033<br>5.046<br>5.049<br>5.049                                                                | 0<br>0<br>0<br>0<br>0<br>0.238<br>0<br>0<br>0<br>3.65E-02<br>0<br>5.96E-02<br>0<br>0<br>0                                                                                 | $A_{2u}$<br>$E_{g}$<br>$T_{2g}$<br>$T_{1g}$<br>$E_{u}$<br>$T_{1u}$<br>$T_{1g}$<br>$A_{2g}$<br>$T_{2g}$<br>$T_{1u}$<br>$T_{2u}$<br>$T_{1u}$<br>$E_{g}$<br>$T_{2g}$                                                                                                                                                                                  | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.450<br>5.454<br>5.465<br>5.465<br>5.482<br>5.496<br>5.511<br>5.511<br>5.515<br>5.517                                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>5.85E-03<br>8.92E-03<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | $\begin{array}{c} A_{2g} \\ T_{1g} \\ E_{g} \\ T_{2g} \\ A_{2u} \\ T_{2u} \\ E_{u} \\ T_{1g} \\ T_{1u} \\ T_{1u} \\ A_{1u} \\ T_{2u} \\ E_{g} \\ E_{u} \\ A_{2g} \end{array}$                                                            |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br><b>4.988</b><br>5.008<br>5.011<br>5.012<br>5.014<br>5.033<br>5.046<br>5.049<br>5.049<br>5.049                                                       | 0<br>0<br>0<br>0<br>0<br>0.238<br>0<br>0<br>0<br>3.65E-02<br>0<br>5.96E-02<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | $A_{2u}$<br>$E_{g}$<br>$T_{2g}$<br>$T_{1g}$<br>$E_{u}$<br>$T_{1u}$<br>$T_{1g}$<br>$A_{2g}$<br>$T_{2g}$<br>$T_{1u}$<br>$T_{2u}$<br>$T_{1u}$<br>$E_{g}$<br>$T_{2g}$<br>$A_{1g}$                                                                                                                                                                      | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.450<br>5.454<br>5.465<br>5.465<br>5.482<br>5.496<br>5.511<br>5.511<br>5.511<br>5.515<br>5.517<br>5.520                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>5.85E-03<br>8.92E-03<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | $\begin{array}{c} A_{2g} \\ T_{1g} \\ E_{g} \\ T_{2g} \\ A_{2u} \\ T_{2u} \\ E_{u} \\ T_{1g} \\ T_{1u} \\ T_{1u} \\ T_{1u} \\ A_{1u} \\ T_{2u} \\ E_{g} \\ E_{u} \\ A_{2g} \\ T_{2g} \end{array}$                                        |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br><b>4.988</b><br>5.008<br>5.011<br>5.012<br>5.014<br>5.033<br>5.046<br>5.049<br>5.049<br>5.049<br>5.082<br>5.082                                     | 0<br>0<br>0<br>0<br>0<br>0.238<br>0<br>0<br>0<br>3.65E-02<br>0<br>5.96E-02<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | $A_{2u}$<br>$E_{g}$<br>$T_{2g}$<br>$T_{1g}$<br>$E_{u}$<br>$T_{1u}$<br>$T_{1g}$<br>$A_{2g}$<br>$T_{2g}$<br>$T_{1u}$<br>$T_{2u}$<br>$T_{1u}$<br>$E_{g}$<br>$T_{2g}$<br>$A_{1g}$<br>$T_{2u}$<br>$T_{2u}$                                                                                                                                              | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.450<br>5.454<br>5.465<br>5.465<br>5.482<br>5.496<br>5.511<br>5.511<br>5.511<br>5.515<br>5.517<br>5.520<br>5.520                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>5.85E-03<br>8.92E-03<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $A_{2g}$<br>$T_{1g}$<br>$E_{g}$<br>$T_{2g}$<br>$A_{2u}$<br>$T_{2u}$<br>$E_{u}$<br>$T_{1u}$<br>$A_{1u}$<br>$T_{2u}$<br>$E_{g}$<br>$E_{u}$<br>$A_{2g}$<br>$T_{2g}$<br>$A_{1g}$                                                             |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br><b>4.988</b><br>5.008<br>5.011<br>5.012<br>5.014<br>5.033<br>5.046<br>5.049<br>5.049<br>5.049<br>5.049<br>5.049<br>5.049<br>5.049<br>5.049          | 0<br>0<br>0<br>0<br>0<br>0<br>0.238<br>0<br>0<br>0<br>3.65E-02<br>0<br>5.96E-02<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $A_{2u}$<br>$E_{g}$<br>$T_{2g}$<br>$T_{1g}$<br>$E_{u}$<br>$T_{1u}$<br>$T_{1g}$<br>$A_{2g}$<br>$T_{2g}$<br>$T_{1u}$<br>$T_{2u}$<br>$T_{1u}$<br>$E_{g}$<br>$T_{2g}$<br>$A_{1g}$<br>$T_{2g}$<br>$A_{1g}$<br>$T_{2g}$<br>$A_{1g}$<br>$E_{g}$<br>$A_{2g}$<br>$A_{2g}$<br>$T_{2g}$<br>$T_{2g}$<br>$A_{2g}$<br>$T_{2u}$<br>$E_{g}$<br>$T_{2u}$<br>$E_{g}$ | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.450<br>5.454<br>5.465<br>5.465<br>5.482<br>5.496<br>5.511<br>5.511<br>5.511<br>5.515<br>5.517<br>5.520<br>5.520<br>5.520<br>5.539          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>5.85E-03<br>8.92E-03<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $A_{2g}$<br>$T_{1g}$<br>$E_{g}$<br>$T_{2g}$<br>$A_{2u}$<br>$T_{2u}$<br>$E_{u}$<br>$T_{1u}$<br>$T_{1u}$<br>$A_{1u}$<br>$T_{2u}$<br>$E_{g}$<br>$E_{u}$<br>$A_{2g}$<br>$T_{2g}$<br>$A_{1g}$<br>$T_{1g}$<br>$T_{1g}$                         |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br>5.008<br>5.011<br>5.012<br>5.014<br>5.033<br>5.046<br>5.049<br>5.049<br>5.049<br>5.049<br>5.082<br>5.099<br>5.110<br>5.120                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>5.96E-02<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                 | $A_{2u}$<br>$E_{g}$<br>$T_{2g}$<br>$T_{1g}$<br>$E_{u}$<br>$T_{1u}$<br>$T_{1g}$<br>$A_{2g}$<br>$T_{2g}$<br>$T_{1u}$<br>$T_{2u}$<br>$T_{1u}$<br>$E_{g}$<br>$T_{2g}$<br>$A_{1g}$<br>$T_{2u}$<br>$E_{g}$<br>$T_{2u}$<br>$E_{g}$<br>$T_{2u}$<br>$E_{2u}$                                                                                                | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.450<br>5.454<br>5.465<br>5.482<br>5.496<br>5.511<br>5.511<br>5.511<br>5.515<br>5.517<br>5.520<br>5.520<br>5.520<br>5.539<br>5.569          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>5.85E-03<br>8.92E-03<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $A_{2g}$<br>$T_{1g}$<br>$E_{g}$<br>$T_{2g}$<br>$A_{2u}$<br>$T_{2u}$<br>$E_{u}$<br>$T_{1u}$<br>$A_{1u}$<br>$T_{2u}$<br>$E_{g}$<br>$E_{u}$<br>$A_{2g}$<br>$T_{2g}$<br>$A_{1g}$<br>$T_{1u}$<br>$T_{2g}$                                     |    |
| 4.884<br>4.918<br>4.927<br>4.928<br>4.928<br><b>4.988</b><br>5.008<br>5.011<br>5.012<br>5.014<br>5.033<br>5.046<br>5.049<br>5.049<br>5.049<br>5.049<br>5.082<br>5.099<br>5.110<br>5.120<br>5.126 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>3.65E-02<br>0<br>0<br>5.96E-02<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0          | $A_{2u}$<br>$E_g$<br>$T_{2g}$<br>$T_{1g}$<br>$E_u$<br>$T_{1u}$<br>$T_{1g}$<br>$A_{2g}$<br>$T_{2g}$<br>$T_{2g}$<br>$T_{1u}$<br>$T_{2u}$<br>$T_{1u}$<br>$E_g$<br>$T_{2g}$<br>$A_{1g}$<br>$T_{2g}$<br>$A_{1g}$<br>$T_{2u}$<br>$E_g$<br>$T_{2u}$<br>$E_g$<br>$T_{2u}$<br>$T_{1u}$                                                                      | Mo-Br<br>to Mo-<br>Br* | 5.398<br>5.410<br>5.420<br>5.423<br>5.446<br>5.448<br>5.450<br>5.454<br>5.465<br>5.482<br>5.496<br>5.511<br>5.511<br>5.511<br>5.515<br>5.517<br>5.520<br>5.520<br>5.520<br>5.539<br>5.569<br>5.618 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>5.85E-03<br>8.92E-03<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $A_{2g}$<br>$T_{1g}$<br>$E_{g}$<br>$T_{2g}$<br>$A_{2u}$<br>$T_{2u}$<br>$E_{u}$<br>$T_{1g}$<br>$T_{1u}$<br>$A_{1u}$<br>$T_{2u}$<br>$E_{g}$<br>$E_{u}$<br>$A_{2g}$<br>$T_{2g}$<br>$A_{1g}$<br>$T_{1u}$<br>$T_{2u}$<br>$T_{2g}$<br>$T_{2u}$ |    |

Mo-Br to Mo-Br\*

| 5.639 | 0        | Eu              |
|-------|----------|-----------------|
| 5.655 | 0        | $T_{2u}$        |
| 5.660 | 0        | $A_{2u}$        |
| 5.707 | 0        | $E_{g}$         |
| 5.713 | 0        | $A_{1g}$        |
| 5.734 | 1.09E-03 | $T_{1u}$        |
| 5.735 | 0        | $T_{1g}$        |
| 5.739 | 0        | $T_{2u}$        |
| 5.756 | 0        | $T_{2g}$        |
| 5.771 | 0        | A <sub>1u</sub> |
| 5.772 | 0        | Eu              |
| 5.772 | 0        | $T_{2u}$        |
| 5.774 | 0        | $T_{2u}$        |
| 5.776 | 2.31E-03 | T <sub>1u</sub> |
| 5.782 | 0        | Eu              |
| 5.782 | 2.43E-03 | T <sub>1u</sub> |
| 5.783 | 0        | $T_{2u}$        |
| 5.792 | 0        | $A_{1g}$        |
| 5.800 | 0        | Eg              |
| 5.802 | 0        | $A_{2g}$        |
| 5.807 | 0        | $T_{2g}$        |
|       |          |                 |

| 5.821 | 0        | T <sub>1g</sub> |                        |
|-------|----------|-----------------|------------------------|
| 5.823 | 0        | T <sub>1g</sub> |                        |
| 5.827 | 0        | T <sub>2g</sub> |                        |
| 5.827 | 0        | Eg              |                        |
| 5.843 | 0.160    | T <sub>1u</sub> | Mo-Br<br>to Mo-<br>Br* |
| 5.860 | 0        | T <sub>2g</sub> |                        |
| 5.862 | 0        | A <sub>1g</sub> |                        |
| 5.872 | 0        | T <sub>1g</sub> |                        |
| 5.888 | 3.11E-02 | T <sub>1u</sub> |                        |
| 5.899 | 0        | $T_{2g}$        |                        |
| 5.902 | 0        | A <sub>2u</sub> |                        |
| 5.910 | 0        | T <sub>1g</sub> |                        |
| 5.923 | 0        | Eg              |                        |
| 5.928 | 0        | $T_{2g}$        |                        |
| 5.961 | 0        | T <sub>2u</sub> |                        |
| 5.977 | 6.22E-02 | T <sub>1u</sub> |                        |
| 5.988 | 0        | A <sub>1g</sub> |                        |
| 5.997 | 0        | Eg              |                        |
| 6.000 | 0        | A <sub>2g</sub> |                        |

| (B)                                       |                                                          |         | 2.981                                     | 3.36E-03                                                 |   | 3.192                                     | 4.35E-08                                                 |
|-------------------------------------------|----------------------------------------------------------|---------|-------------------------------------------|----------------------------------------------------------|---|-------------------------------------------|----------------------------------------------------------|
| Excitation                                | Oscillator                                               | Nature  | 2,993                                     | 3.89E-02                                                 |   | 3,194                                     | 2.34E-03                                                 |
| 2 C4E                                     |                                                          |         | 2.997                                     | 7.84E-03                                                 |   | 3.196                                     | 2.31E-08                                                 |
| 2.040                                     | 2.02E-05                                                 |         | 3 011                                     | 2 19F-02                                                 |   | 3 200                                     | 1 18F-08                                                 |
| 2.649                                     | 2.03E-05                                                 |         | 3 015                                     | 2.16E 02                                                 |   | 3 202                                     | 2 74F-08                                                 |
| 2.655                                     | 2.01E-05                                                 |         | 3.026                                     | 2.02E-09                                                 |   | 3 203                                     | 6.94E-03                                                 |
| 2.680                                     | 3.33E-05                                                 |         | 3 020                                     | 2.02E-03                                                 |   | 3 206                                     | 6.66E-08                                                 |
| 2.701                                     | 4.54E-09                                                 |         | 2 024                                     | 1.955.00                                                 |   | 2 200                                     | 0.00E-00                                                 |
| 2.703                                     | 3.31E-09                                                 | Mo-Mo / | 3.034                                     | 1.03E-09                                                 |   | 3.209                                     | 2.99E-03                                                 |
| 2.729                                     | 1.61E-09                                                 | Mo-Br*  | 3.037                                     | 1.87E-03                                                 |   | 3.212                                     | 3.83E-08                                                 |
| 2.731                                     | 1.12E-09                                                 |         | 3.041                                     | 4.75E-09                                                 |   | 3.214                                     | 3.01E-03                                                 |
| 2.758                                     | 1.22E-09                                                 |         | 3.046                                     | 9.41E-04                                                 |   | 3.226                                     | 2.41E-03                                                 |
| 2.763                                     | 1.04E-08                                                 | to      | 3.047                                     | 2.12E-03                                                 |   | 3.226                                     | 4.58E-03                                                 |
| 2.880                                     | 3.80E-10                                                 |         | 3.048                                     | 1.25E-08                                                 |   | 3.230                                     | 9.36E-05                                                 |
| 2.895                                     | 1.61E-08                                                 |         | 3.072                                     | 6.22E-09                                                 |   | 3.237                                     | 7.69E-04                                                 |
| 2.904                                     | 1.82E-09                                                 | Мо-Мо*  | 3.079                                     | 1.85E-08                                                 |   | 3.241                                     | 8.47E-07                                                 |
| 2.908                                     | 2.45E-09                                                 |         | 3.090                                     | 6.20E-09                                                 |   | 3.241                                     | 7.54E-03                                                 |
| 2.911                                     | 4.22E-10                                                 |         | 3.091                                     | 8.38E-09                                                 |   | 3.245                                     | 9.92E-04                                                 |
| 2 923                                     | 5 80E-09                                                 |         | 3.097                                     | 1.17E-08                                                 |   | 3.247                                     | 3.25E-03                                                 |
| 2 933                                     | 4.56E-04                                                 |         | 3.119                                     | 1.08E-08                                                 |   | 3.250                                     | 1.64E-03                                                 |
| 2 953                                     | 1 12E-03                                                 |         | 3.120                                     | 2.96E-09                                                 |   | 3.253                                     | 5.81E-08                                                 |
| 2.000                                     | 7 00E-03                                                 |         | 3.124                                     | 7.89E-10                                                 |   | 3.256                                     | 1.17E-03                                                 |
| 2.901                                     | 0.02E 04                                                 |         | 3.131                                     | 3.66E-08                                                 |   | 3.261                                     | 1.59E-03                                                 |
| 2.903                                     | 9.92E-04                                                 |         | 3.146                                     | 1.75E-09                                                 |   | 3.277                                     | 3.35E-04                                                 |
| 2.900                                     | 1.04E-02                                                 |         | 3.150                                     | 7.98E-09                                                 | _ | 3.281                                     | 1.90E-02                                                 |
| 2.953<br>2.961<br>2.963<br>2.968<br>2.980 | 1.12E-03<br>7.09E-03<br>9.92E-04<br>1.04E-02<br>2.59E-02 |         | 3.120<br>3.124<br>3.131<br>3.146<br>3.150 | 2.96E-09<br>7.89E-10<br>3.66E-08<br>1.75E-09<br>7.98E-09 | _ | 3.253<br>3.256<br>3.261<br>3.277<br>3.281 | 5.81E-08<br>1.17E-03<br>1.59E-03<br>3.35E-04<br>1.90E-02 |

| 3.281 3.62E-07 | 3.501 4.71E-05 | 3.757 5.67E-08 |
|----------------|----------------|----------------|
| 3.286 9.32E-09 | 3.509 1.76E-04 | 3.760 1.34E-02 |
| 3.286 1.09E-03 | 3.515 2.43E-09 | 3.761 9.73E-07 |
| 3.295 1.67E-02 | 3.517 7.88E-09 | 3.762 1.14E-02 |
| 3.297 4.12E-08 | 3.520 2.82E-05 | 3.763 3.98E-07 |
| 3.310 1.17E-02 | 3.520 3.64E-09 | 3.765 1.18E-07 |
| 3.311 1.14E-02 | 3.528 1.99E-04 | 3.767 1.10E-02 |
| 3.318 1.91E-03 | 3.529 5.03E-09 | 3.769 1.17E-07 |
| 3.320 4.18E-03 | 3.535 7.17E-09 | 3.771 1.14E-03 |
| 3.325 1.93E-09 | 3.538 2.24E-09 | 3.771 1.74E-08 |
| 3.336 2.12E-08 | 3.540 8.78E-05 | 3.789 1.15E-07 |
| 3.338 1.63E-02 | 3.546 5.77E-08 | 3.795 4.09E-03 |
| 3.340 2.13E-08 | 3.551 4.10E-08 | 3.801 4.24E-03 |
| 3.346 2.73E-04 | 3.552 3.64E-04 | 3.811 4.87E-08 |
| 3.356 1.05E-04 | 3.555 2.41E-08 | 3.816 1.59E-09 |
| 3.358 8.20E-09 | 3.569 1.97E-03 | 3.820 1.92E-03 |
| 3.362 1.18E-07 | 3.574 2.95E-04 | 3.827 2.51E-07 |
| 3.368 8.67E-09 | 3.579 8.25E-04 | 3.827 2.93E-03 |
| 3.369 9.36E-04 | 3.583 1.27E-03 | 3.829 2.68E-08 |
| 3.380 4.35E-08 | 3.600 1.18E-02 | 3.831 2.09E-08 |
| 3.387 2.92E-03 | 3.608 1.26E-02 | 3.835 3.44E-08 |
| 3.392 2.79E-03 | 3.611 1.04E-02 | 3.840 2.47E-08 |
| 3.394 1.48E-08 | 3.641 1.24E-04 | 3.843 6.14E-04 |
| 3.404 3.57E-03 | 3.642 1.15E-08 | 3.844 1.94E-03 |
| 3.407 1.51E-08 | 3.651 1.02E-04 | 3.851 1.69E-03 |
| 3.409 1.28E-07 | 3.653 2.53E-04 | 3.854 1.82E-03 |
| 3.410 7.99E-04 | 3.657 4.10E-04 | 3.863 3.89E-04 |
| 3.414 5.94E-04 | 3.664 9.31E-08 | 3.869 2.67E-04 |
| 3.419 5.69E-05 | 3.669 1.15E-03 | 3.873 1.07E-03 |
| 3.426 8.05E-04 | 3.674 1.15E-08 | 3.891 1.17E-08 |
| 3.427 1.16E-09 | 3.680 5.75E-08 | 3.895 1.91E-09 |
| 3.433 6.25E-08 | 3.682 2.45E-03 | 3.899 4.29E-02 |
| 3.435 7.61E-04 | 3.689 1.34E-03 | 3.912 4.71E-09 |
| 3.438 4.87E-04 | 3.692 8.37E-09 | 3.912 4.07E-02 |
| 3.444 7.97E-08 | 3.692 4.82E-04 | 3.917 4.08E-02 |
| 3.445 5.40E-08 | 3.704 1.75E-04 | 3.919 3.23E-08 |
| 3.453 2.96E-08 | 3.707 1.17E-08 | 3.929 3.16E-08 |
| 3.464 1.29E-08 | 3.707 1.18E-03 | 3.933 4.65E-09 |
| 3.470 1.70E-08 | 3.714 3.34E-03 | 3.940 7.77E-09 |
| 3.474 5.55E-05 | 3.717 4.68E-09 | 3.949 1.43E-08 |
| 3.476 6.74E-09 | 3.723 4.89E-04 | 3.953 2.91E-08 |
| 3.479 5.36E-08 | 3.733 4.29E-03 | 3.956 9.50E-09 |
| 3.482 2.71E-09 | 3.734 2.80E-03 | 3.979 1.06E-08 |
| 3.488 1.70E-08 | 3.738 5.05E-04 | 3.982 2.08E-08 |
| 3.491 1.55E-04 | 3.741 1.76E-04 | 3.982 1.17E-03 |
| 3.499 2.10E-09 | 3.743 8.28E-03 | 3.987 1.70E-08 |

| 3.992 | 2.99E-03 |                  | 4.294 | 5.05E-08 |       | 4.485     | 1.12E-03 |        |
|-------|----------|------------------|-------|----------|-------|-----------|----------|--------|
| 3.992 | 1.06E-08 |                  | 4.294 | 1.09E-03 |       | 4.494     | 7.86E-08 |        |
| 3.995 | 1.07E-08 |                  | 4.296 | 1.39E-02 |       | 4.498     | 9.32E-09 | and    |
| 3.999 | 6.24E-03 |                  | 4.297 | 1.69E-08 |       | 4.506     | 8.74E-09 |        |
| 4.003 | 7.18E-09 |                  | 4.299 | 4.51E-02 |       | 4.513     | 1.62E-09 |        |
| 4.011 | 3.15E-08 |                  | 4.300 | 5.43E-02 |       | 4.515     | 7.84E-04 | Mo-Br  |
| 4.015 | 2.12E-08 |                  | 4.303 | 1.27E-08 |       | 4.521     | 6.73E-09 |        |
| 4.022 | 4.57E-09 |                  | 4.306 | 5.59E-03 |       | 4.526     | 1.89E-08 |        |
| 4.055 | 3.12E-05 |                  | 4.308 | 7.54E-02 |       | 4.528     | 7.45E-09 | to     |
| 4.068 | 9.72E-05 |                  | 4.310 | 7.96E-03 |       | 4.533     | 5.24E-09 |        |
| 4.072 | 7.53E-05 |                  | 4.311 | 2.92E-08 |       | 4.537     | 1.04E-08 |        |
| 4.075 | 2.39E-04 |                  | 4.319 | 7.88E-04 |       | 4.540     | 2.27E-08 | Mo-Mo* |
| 4.087 | 9.71E-05 |                  | 4.342 | 1.34E-02 |       | 4.552     | 4.52E-08 |        |
| 4.092 | 2.44E-04 |                  | 4.360 | 0.698    |       | 4.560     | 2.91E-09 |        |
| 4.094 | 3.01E-04 |                  | 4.364 | 0.540    |       | 4.561     | 4.51E-09 |        |
| 4.101 | 8.82E-04 |                  | 4.372 | 0.576    |       | 4.562     | 2.01E-08 |        |
| 4.106 | 2.26E-04 |                  | 4.373 | 1.87E-06 |       | 4.565     | 4.10E-08 |        |
| 4.158 | 3.59E-09 |                  | 4.376 | 5.00E-03 |       | 4.576     | 2.86E-08 |        |
| 4.160 | 5.36E-09 |                  | 4.382 | 2.96E-03 |       | 4.582     | 2.48E-09 |        |
| 4.173 | 5.89E-09 |                  | 4.388 | 1.84E-04 |       | 4.585     | 1.98E-03 |        |
| 4.174 | 5.83E-09 | Mo-Mo /<br>Mo-Br | 4.389 | 1.62E-09 |       | 4.600     | 2.87E-08 |        |
| 4.179 | 1.88E-08 |                  | 4.392 | 1.04E-08 |       | 4.600     | 3.33E-03 |        |
| 4.187 | 1.41E-09 |                  | 4.401 | 1.23E-07 |       | 4.606     | 2.81E-03 |        |
| 4.190 | 9.30E-09 | to               | 4.402 | 4.83E-10 |       | 4.613     | 4.01E-03 |        |
| 4.192 | 9.19E-09 |                  | 4.404 | 1.74E-02 |       | 4.617     | 1.64E-03 |        |
| 4.204 | 7.89E-03 |                  | 4.405 | 3.59E-10 |       | 4.626     | 3.32E-03 |        |
| 4.207 | 2.77E-09 | Мо-Мо*           | 4.410 | 2.89E-08 |       | 4.629     | 2.97E-03 |        |
| 4.213 | 1.02E-08 |                  | 4.414 | 1.02E-02 |       | 4.631     | 1.06E-02 |        |
| 4.215 | 9.85E-03 |                  | 4.416 | 5.09E-03 |       | 4.641     | 5.11E-03 |        |
| 4.223 | 4.25E-09 |                  | 4.421 | 6.85E-10 |       | 4.644     | 6.40E-03 |        |
| 4.229 | 4.05E-08 |                  | 4.422 | 6.04E-03 |       | 4.652     | 1.51E-02 |        |
| 4.235 | 1.34E-02 |                  | 4.425 | 4.79E-03 |       | 4.655     | 4.48E-03 |        |
| 4.258 | 0.327    |                  | 4.425 | 5.85E-09 |       | 4.661     | 9.20E-03 |        |
| 4.261 | 0.308    |                  | 4.427 | 2.78E-03 |       | 4.664     | 4.06E-03 |        |
| 4.266 | 0.413    |                  | 4.433 | 4.46E-09 |       | 4.669     | 2.01E-02 |        |
| 4.270 | 2.20E-08 |                  | 4.436 | 1.19E-08 |       | 4.671     | 5.02E-03 |        |
| 4.274 | 4.55E-09 |                  | 4.439 | 2.47E-08 |       | 4.684     | 8.38E-03 |        |
| 4.277 | 2.23E-08 |                  | 4.447 | 4.25E-02 |       | 4.688     | 2.78E-03 |        |
| 4.280 | 1.23E-02 |                  | 4.449 | 1.90E-09 |       | 4.705     | 1.23E-03 |        |
| 4.282 | 1.41E-08 |                  | 4.451 | 2.30E-07 | Mo-Br | 4.708     | 1.16E-03 |        |
| 4.284 | 2.12E-08 |                  | 4.453 | 3.77E-02 |       | 4.709     | 2.41E-08 |        |
| 4.284 | 1.15E-02 |                  | 4.455 | 4.23E-09 |       | 4.722     | 1.67E-08 |        |
| 4.287 | 2.36E-06 |                  | 4.457 | 2.71E-03 | to    | 4.725     | 6.68E-09 |        |
| 4.287 | 1.37E-02 |                  | 4.461 | 3.17E-02 |       | 4.727     | 2.00E-02 |        |
| 4.288 | 1.54E-02 |                  | 4.462 | 2.14E-08 |       | 4.728     | 2.96E-08 |        |
| 4.290 | 4.95E-09 |                  | 4.465 | 2.96E-08 | Br    | <br>4.733 | 4.07E-02 |        |

| 4.733 1.68E-06 | 4.891 3.53E-02 | 5.073 2.26E-08 |
|----------------|----------------|----------------|
| 4.736 4.89E-09 | 4.901 3.26E-02 | 5.091 7.96E-03 |
| 4.738 4.99E-02 | 4.904 5.32E-04 | 5.096 5.06E-08 |
| 4.741 4.63E-08 | 4.906 2.61E-02 | 5.097 1.03E-02 |
| 4.741 4.39E-02 | 4.910 0.207    | 5.102 4.61E-08 |
| 4.742 2.94E-07 | 4.913 0.144    | 5.108 1.12E-02 |
| 4.744 6.87E-08 | 4.918 0.117    | 5.110 1.38E-08 |
| 4.745 4.76E-02 | 4.929 1.02E-02 | 5.112 1.14E-02 |
| 4.748 9.44E-09 | 4.939 3.17E-04 | 5.129 2.78E-02 |
| 4.754 4.46E-08 | 4.939 3.23E-08 | 5.130 1.80E-02 |
| 4.754 3.32E-08 | 4.942 3.78E-03 | 5.269 7.89E-08 |
| 4.755 4.15E-02 | 4.943 1.40E-08 | 5.270 0.292    |
| 4.763 3.49E-02 | 4.955 1.57E-07 | 5.275 4.41E-07 |
| 4.763 1.34E-08 | 4.955 6.52E-04 | 5.276 0.244    |
| 4.766 5.61E-09 | 4.958 3.97E-08 | 5.282 0.290    |
| 4.779 1.32E-08 | 4.962 9.78E-09 | 5.290 1.51E-07 |
| 4.786 8.92E-03 | 4.964 9.69E-03 | 5.294 2.00E-08 |
| 4.787 1.08E-02 | 4.966 3.48E-07 | 5.298 1.50E-02 |
| 4.788 1.70E-08 | 4.967 3.02E-04 | 5.302 2.82E-09 |
| 4.791 2.01E-08 | 4.970 1.18E-07 | 5.307 4.22E-03 |
| 4.792 1.06E-02 | 4.971 1.59E-07 | 5.316 7.80E-08 |
| 4.793 1.75E-08 | 4.978 2.96E-08 | 5.318 2.92E-02 |
| 4.804 2.65E-08 | 4.979 4.53E-04 | 5.323 5.12E-08 |
| 4.808 7.56E-09 | 4.981 7.24E-04 | 5.325 4.22E-08 |
| 4.809 8.77E-05 | 4.982 5.99E-08 | 5.328 0.140    |
| 4.813 5.76E-09 | 4.984 1.16E-04 | 5.334 0.101    |
| 4.815 8.24E-09 | 4.985 3.94E-08 | 5.339 0.275    |
| 4.818 4.49E-08 | 4.988 1.58E-07 | 5.347 0.234    |
| 4.826 1.10E-08 | 4.989 1.09E-03 | 5.349 0.214    |
| 4.839 4.86E-03 | 4.991 7.29E-09 | 5.369 5.64E-02 |
| 4.840 0.129    | 4.992 1.37E-08 | 5.373 4.07E-08 |
| 4.840 1.59E-04 | 4.995 4.40E-03 | 5.376 1.00E-03 |
| 4.846 2.64E-04 | 4.996 1.12E-07 | 5.380 3.26E-07 |
| 4.847 2.74E-08 | 4.999 2.03E-05 | 5.382 4.20E-04 |
| 4.852 1.11E-08 | 5.007 6.00E-09 | 5.386 4.10E-07 |
| 4.856 2.05E-03 | 5.008 2.02E-08 | 5.391 1.85E-04 |
| 4.859 4.32E-08 | 5.015 3.46E-09 | 5.392 4.14E-07 |
| 4.863 2.68E-08 | 5.044 1.94E-07 | 5.397 1.94E-08 |
| 4.864 8.24E-04 | 5.047 2.70E-05 | 5.401 8.71E-09 |
| 4.866 0.1074   | 5.052 2.55E-08 | 5.420 2.07E-07 |
| 4.870 3.17E-09 | 5.054 1.30E-07 | 5.434 1.35E-02 |
| 4.871 3.51E-03 | 5.055 1.49E-04 | 5.440 8.71E-03 |
| 4.878 4.44E-03 | 5.056 1.61E-08 | 5.444 1.46E-02 |
| 4.881 8.38E-09 | 5.058 1.75E-04 | 5.449 2.04E-02 |
| 4.881 1.54E-03 | 5.065 1.26E-04 | 5.454 1.39E-02 |
| 4 885 0 41E 03 | 5 065 1 41E-09 | 5.464 1.02E-02 |

| 5.484 1.62E-08 | 5.505 0.192    | 5.532 3.26E-04 |
|----------------|----------------|----------------|
| 5.488 0.184    | 5.510 2.95E-05 | 5.538 5.11E-06 |
| 5.490 1.73E-08 | 5.510 0.185    | 5.541 7.65E-05 |
| 5.494 3.81E-08 | 5.520 7.98E-07 | 5.543 1.90E-04 |
| 5.497 6.09E-08 | 5.526 2.43E-06 |                |
| 5.498 4.68E-08 | 5.529 4.29E-04 |                |

**Table S4** TD-DFT singlet-triplet electronic excitations in eV calculated for  $[Mo_6Br_8^iBr_6^a]^2$ -(A) in its  $O_h$ -DFT optimized geometry (symmetrically degenerated energies not reported) and (B) in its experimental (TBA)<sub>2</sub>[Mo\_6Br\_8Br\_6] arrangement.

(A)

|                      |                 |        | (B) |                      |        |
|----------------------|-----------------|--------|-----|----------------------|--------|
| Excitation<br>Energy | Symmetry        | Nature |     | Excitation<br>Energy | Nature |
| 2.390                | A <sub>1u</sub> | Мо-Мо  |     | 2.508                |        |
| 2.401                | $T_{1g}$        |        |     | 2.510                |        |
| 2.424                | Eu              | to     |     | 2.518                |        |
| 2.445                | $T_{2g}$        |        |     | 2.537                | Mo-Mo  |
| 2.475                | A <sub>2u</sub> | Mo-Mo* |     | 2.542                |        |
| 2.613                | Eu              |        |     | 2.544                | to     |
|                      |                 |        |     | 2.561                |        |
|                      |                 |        |     | 2.580                | Mo-Mo* |
|                      |                 |        |     | 2.587                |        |
|                      |                 |        |     | 2.589                |        |
|                      |                 |        |     | 2.750                |        |
|                      |                 |        |     | 2.761                |        |
|                      |                 |        |     | 2.766                |        |





**Fig. S6** TD-DFT simulated absorption spectra of  $[Mo_6Br_8^iBr_6^a]^{2-}$  (oscillator strength versus wavelength) for the excited states T<sub>1</sub>, T<sub>2</sub>, T<sub>3</sub>, T<sub>4</sub> (from top to bottom).



**Fig. S7** Spatial distributions of the computed spin density for  $T_1$ ,  $T_2$ ,  $T_3$ ,  $T_4$ . Isocontour value:  $\pm 0.001$  [e/bohr<sup>3</sup>].

Table S5 Mo Mulliken atomic spin-densities of  $T_1$ ,  $T_2$ ,  $T_3$ ,  $T_4$ . See Scheme 1 for labeling.

|     | T <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> | $T_4$  |
|-----|----------------|----------------|----------------|--------|
| Mo1 | 0.009          | 0.001          | 0.022          | 0.999  |
| Mo2 | 0.005          | 0.002          | 0.022          | 0.999  |
| Mo3 | -0.004         | 0.002          | -0.017         | -0.050 |
| Mo4 | -0.006         | 0.001          | -0.017         | -0.050 |
| Mo5 | 1.729          | 1.718          | 1.713          | -0.022 |
| M06 | 0.005          | 0.005          | 0.004          | -0.022 |
|     |                |                |                |        |

Table S6 Cartesian coordinates of the optimized transition state connecting T1, T2, T3 to T4

|    | Х         | У         | у         |
|----|-----------|-----------|-----------|
| Mo | -1.341314 | -0.01164  | -0.01438  |
| Mo | 1.316621  | 0.024622  | 0.02297   |
| Mo | 1.466358  | -0.049287 | 2.6958    |
| Мо | -1.326629 | 0.086917  | 2.64272   |
| Mo | 0.002779  | -1.848939 | 1.35876   |
| Mo | -0.073159 | 1.871597  | 1.37002   |
| Br | 0.035448  | -1.879467 | 1.280482  |
| Br | -2.645503 | -1.874931 | 1.339559  |
| Br | -2.802673 | 1.84359   | 1.143477  |
| Br | -0.020926 | 1.869001  | 1.327537  |
| Br | -3.150165 | -0.127972 | -1.953303 |
| Br | 3.201803  | 0.089693  | 1.834221  |
| Br | -3.142861 | 0.214242  | 4.539624  |
| Br | -0.011987 | -4.494917 | 1.434209  |
| Br | -0.135542 | 4.498067  | 1.489389  |
| Br | 2.658095  | -1.913381 | 1.251668  |
| Br | 2.660244  | 1.892106  | 1.373294  |
| Br | 3.422191  | -0.172866 | 4.448336  |
| Br | 0.053370  | -1.830221 | 4.026085  |
| Br | 0.230087  | 1.796158  | 4.067145  |