Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015 #### **Supplementary Information** # Assembly and Relaxation Behaviors of Phosphatidylethanolamine Monolayers Investigated by Polarization and Frequency Resolved SFG-VS Feng Wei*, Wei Xiong, Wenhui Li, Wangting Lu, Heather C. Allen, Wanquan Zheng #### 1. Experimental details of π -A isotherm and BAM detections Three PE lipids: DMPE, D_{54} -DMPE and DPPE (Avanti lipids, purity> 99%) were analyzed in this study. The lipid solutions for spreading were prepared using the mixing solute of CHCl₃: Methanol = 4:1. For each isotherm experiments, about 35 ul lipid solution (1 mM) were spread on the surface of deionize water (Milli-Q Academic). The Langmuir isotherm of DMPE and DPPE monolayers were collected by KSV Teflon mini Trough with a compression speed of 5mm/min. The same Langmuir trough was also used in SFG-VS detection to control the SP of monolayer. For SFG spectra collection at stabilized SP value (\pm 0.3 mN/m), the compression speed of \pm 3 mm/min was used. For the compression kinetics detection, the compression speed was 27 mm/min. BAM images of the monolayers were collected simultaneously with π -A isotherms using a custom-built BAM. The laser source (Research Electro-Optics) emits 5 mW p-polarized light at 543 nm. The incident beam is first attenuated by a half-wave plate and then filtered by a Glan-Thompson polarizer before reaching the aqueous surface at the Brewster angle (\sim 53°). The reflected beam is collected by an infinity-corrected Nikon 10° objective lens and is then focused by a tube lens. A back-illuminated electron multiplying CCD camera (Andor, model DV887-BV, 512 × 512 pixels) was used to record BAM images. The inclined position of the imaging optics results in images focused along a central narrow stripe. Final images taken were cropped from a 800 μ m \times 800 μ m size to show the most resolved regions, which was typically the center of the image where the beam was the most intense. #### 2. SFG spectra of ODT monolayers Figure S1. SFG spectra of ODT monolayer at SP = 5 mN/m and 20 mN/m in the wavenumber range of $2800\text{-}3000 \text{ cm}^{-1}$. #### 3. Fitting of SFG-VS Signals As described in detail elsewhere, the intensity of the SFG light is proportional to the square of the sample's effective second-order nonlinear susceptibility($\chi_{\it eff}^{(2)}$), and the intensity of the two input fields $I_1(\omega_{\it vis})$ and $I_2(\omega_{\it IR})$, see eq. (S1), which vanishes when a material has inversion symmetry.¹⁻⁷ $$I(\omega_{SFG}) \propto \left| \chi_{eff}^{(2)} \right|^2 I_1(\omega_{vis}) I_2(\omega_{IR}) \tag{S1}$$ where $\omega_{SFG}=\omega_{IR}+\omega_{vis}$. As the IR beam frequency is tuned over the vibrational resonance of surface/interface molecules, the effective surface nonlinear susceptibility $\chi_R^{(2)}$ can be enhanced. The frequency dependence of $\chi_{eff}^{(2)}$ is described by eq. (S2) $$\chi_{eff}^{(2)}(\omega) = \chi_{NR}^{(2)} + \sum_{\nu} \frac{A_{\nu}}{\omega - \omega_{\nu} + i\Gamma_{\nu}}$$ (S2) where A_v , ω_v , and Γ_v are the strength, resonant frequency, and damping coefficient of the vibrational mode(v), respectively. A_v could be either positive or negative depending on the phase of the vibrational mode. The plot of SFG signal vs. the IR input frequency shows a polarized vibrational spectrum of the molecules at surface or interface. A_v , ω_v , and Γ_v can be extracted by fitting the spectrum. The fitting parameters of SFG spectra of DMPE monolayer at 3mN/m and 20 mN/m are listed in table S1 for demonstration. Table S1 Fitting parameters of SFG spectra of DMPE monolayer at 3mN/m and 20 mN/m | SP | | 3 mN/m | | 20 mN/m | | |--------------|------------------|--------------------|-------------------|-------------------|-------------------| | Polarization | | PPP | SSP | PPP | SSP | | A_0 | | 0.65 ± 0.09 | 0.54 ± 0.09 | -0.39 ± 0.07 | -0.74 ± 0.29 | | | A | -32.07 ± 16.23 | 10.29 ± 7.66 | | | | Peak 1 | $\omega_{ heta}$ | 2837.1 ± 2.4 | | | | | | Γ | 16.9 ± 5.8 | | | | | | A | -18.63 ± 4.87 | -33.24 ± 2.19 | 14.87±1.22 | 13.98 ± 1.47 | | Peak 2 | $\omega_{ heta}$ | 2855.0 ± 0.4 | | 2848.5 ± 0.9 | | | | Γ | 7.6 ± 0.4 | | 8.4 ± 0.6 | | | | A | 9.79 ± 1.51 | -38.41 ± 1.84 | -18.92 ± 2.09 | 110.93 ± 2.23 | | Peak 3 | ω_0 | 2882.1 ± 0.2 | | 2880.8 ± 0.1 | | | | Γ | 4.9 ± 0.2 | | 6.2 ± 0.1 | | | | A | -2.69 ± 1.98 | -5.34 ± 2.45 | -24.22 ± 5.85 | 31.27 ± 6.70 | | Peak 4 | ω_{0} | 2930.2 ± 0.8 | | 2901.6 ± 0.7 | | | | Γ | 4.7 ± 1.8 | | 10.2 ± 1.7 | | |---------|------------------|-------------------|-------------------|-------------------|-------------------| | | A | 2.44 ± 2.04 | -53.81 ± 3.58 | -25.10 ± 2.73 | 120.95 ± 3.79 | | Peak 5 | $\omega_{ heta}$ | 2947.1 ± 0.4 | | 2943.4 ± 0.2 | | | | Γ | 7.8 ± 0.4 | | 9.0 ± 0.2 | | | Peak 6 | A | 5.50 ± 1.70 | -5.93 ± 2.33 | -18.36 ± 5.16 | 7.09 ± 2.89 | | | $\omega_{ heta}$ | 2957.8 ± 0.3 | | 2957.2 ± 0.4 | | | | Γ | 3.7 ± 0.8 | | 5.6 ± 1.0 | | | Peak 7 | A | -37.50 ± 1.54 | 2.87 ± 1.31 | 74.23 ± 1.82 | -15.83 ± 1.91 | | | ω_0 | 2970.4 ± 0.2 | | 2970.1 ± 0.2 | | | | Γ | 4.4 ± 0.2 | | 5.1 ± 0.1 | | | C_{0} | | 4.67 ± 0.42 | 1.25 ± 0.99 | 4.89 ± 1.1 | -4.85 ± 1.21 | #### 4. Tilt angle analysis The molecular orientation information can be obtained by relating SFG susceptibility tensor elements $\chi_{ijk}(i,j,k=x,y,z)$ to the SFG molecular hyperpolarizability tensor elements $\beta_{lmn}(l,m,n=a,b,c)$. ⁴⁻⁶ The components of $\chi_{eff}^{(2)}$ of ssp, and ppp polarization combinations are given in equations (S5)-(S6) in the lab coordinate system which is defined as the z-axis being along the surface normal and the x-axis being in the incident plane. ⁴⁻⁶ $$\chi_{eff,ssp}^{(2)} = L_{yy}(\omega_{SF})L_{yy}(\omega_{Vis})L_{zz}(\omega_{IR})\sin\beta_{IR}\chi_{yyz}^{(2)}$$ $$\chi_{eff,ppp}^{(2)} = -L_{xx}(\omega_{SF})L_{xx}(\omega_{Vis})L_{zz}(\omega_{IR})\cos\beta_{SF}\cos\beta_{Vis}\sin\beta_{IR}\chi_{xxz}^{(2)}$$ $$-L_{xx}(\omega_{SF})L_{zz}(\omega_{Vis})L_{xx}(\omega_{IR})\cos\beta_{SF}\sin\beta_{Vis}\cos\beta_{IR}\chi_{xzx}^{(2)}$$ $$+L_{zz}(\omega_{SF})L_{xx}(\omega_{Vis})L_{xx}(\omega_{IR})\sin\beta_{SF}\cos\beta_{Vis}\cos\beta_{IR}\chi_{zxx}^{(2)}$$ $$+L_{zz}(\omega_{SF})L_{zz}(\omega_{Vis})L_{zz}(\omega_{IR})\sin\beta_{SF}\sin\beta_{Vis}\sin\beta_{IR}\chi_{zzz}^{(2)}$$ $$+L_{zz}(\omega_{SF})L_{zz}(\omega_{Vis})L_{zz}(\omega_{IR})\sin\beta_{SF}\sin\beta_{Vis}\sin\beta_{IR}\chi_{zzz}^{(2)}$$ $$(S4)$$ where β_{SF} , β_{Vis} and β_{IR} are the angles between the surface normal and the sum frequency beam, the input visible beam, and the input IR beam, respectively. L_{ii} (i = x, y or z) denotes the Fresnel coefficients. Under current experimental geometry, after considering the Fresnel coefficient constants, eqs.(S5-S6) are then given by #### CH₃ groups: $$\chi_{eff\ ssp}^{(2)} = 0.249 \chi_{yyz}^{(2)} \tag{S5}$$ $$\chi_{eff,pnp}^{(2)} = -0.159 \chi_{xxz}^{(2)} + 0.226 \chi_{zzz}^{(2)}$$ (S6) ### PO₂ groups: $$\chi_{eff,ssp}^{(2)} = 0.244 \chi_{vvz}^{(2)} \tag{S7}$$ $$\chi_{eff,ppp}^{(2)} = -0.156\chi_{xxz}^{(2)} + 0.225\chi_{zzz}^{(2)}$$ (S8) # 3.1. CH₃ groups. Here we treated CH₃ groups as C_{3v} symmetry The SFG susceptibility tensor elements $\chi_{ijk}(i,j,k=x,y,z)$ of $C_{\alpha v}$ symmetry have following relationships.⁴⁻⁶ $$\chi_{xxz,ss}^{(2)} = \chi_{yyz,ss}^{(2)} = \frac{1}{2} N_s \beta_{ccc} [(1+R)\langle \cos \theta \rangle - (1-R)\langle \cos^3 \theta \rangle]$$ (S9) $$\chi_{zzz,ss}^{(2)} = N_s \beta_{ccc} [R \langle \cos \theta \rangle + (1 - R) \langle \cos^3 \theta \rangle]$$ (S10) $$R = \frac{1 + r - (1 - r)\cos^2 \tau}{2(r + (1 - r)\cos^2 \tau)}$$ (S11) $$\chi_{xxz,as}^{(2)} = \chi_{yyz,as}^{(2)} = -N_s R' \beta_{ccc} (\langle \cos \theta \rangle - \langle \cos^3 \theta \rangle)$$ (S11) $$\chi_{zzz,ss}^{(2)} = 2N_s R' \beta_{ccc} [\langle \cos \theta \rangle - \langle \cos^3 \theta \rangle]$$ (S12) $$R' = \frac{\beta_{aca}}{\beta_{ccc}} = \frac{-(1-r)\sin^2 \tau \frac{G_{as}}{\omega_{as}}}{2(r+(1-r)\cos^2 \tau)\frac{G_{ss}}{\omega_{ss}}}$$ (S13) The parameter R is estimated to be 3.338 when r = 0.03 and $\tau = 109.5^{\circ}$, and the parameter R is estimated to be 2.80.⁷ By substitution of eqs. (S9)-(S10) in eqs.(S7)-(S8), the deduced susceptibility ratio $\chi_{ssp,CH_3-ss}^{(2)} / \chi_{ssp,CH_3-as}^{(2)}$ can be plotted as a function of orientation angle (θ) (shown in Figure S2). Figure S2 Deduced susceptibility ratio of $\chi_{ssp,CH_3-ss}^{(2)}$ / $\chi_{ssp,CH_3-as}^{(2)}$ is plotted as a function of orientation angle (θ) for the CH₃ groups which was treated as having C_{3v} symmetry. # 3.2. PO₂ groups. The symmetry of PO_2^- group can be treated as C_{2v} symmetry. The peaks at ~ 1100 cm⁻¹ can be assigned to A_1 modes. The susceptibility tensor elements of A_1 mode in C_{2v} symmetry are described as following equations. 4-6 A₁ mode: $$\chi_{xxz}^{(2),A1} = \chi_{yyz}^{(2),A1} = \frac{1}{2} N_s \beta_{ccc} \left[\left\langle \cos^2 \psi \right\rangle R_a + \left\langle \sin^2 \psi \right\rangle R_b + 1 \right] \left\langle \cos \theta \right\rangle$$ $$+ \frac{1}{2} N_s \beta_{ccc} \left[\left\langle \sin^2 \psi \right\rangle R_a + \left\langle \cos^2 \psi \right\rangle R_b - 1 \right] \left\langle \cos^3 \theta \right\rangle$$ (S14) $$\chi_{zzz}^{(2),A1} = N_s \beta_{ccc} \left[\left\langle \sin^2 \psi \right\rangle R_a + \left\langle \cos^2 \psi \right\rangle R_b \right] \left\langle \cos \theta \right\rangle - N_s \beta_{ccc} \left[\left\langle \sin^2 \psi \right\rangle R_a + \left\langle \cos^2 \psi \right\rangle R_b - 1 \right] \left\langle \cos^3 \theta \right\rangle$$ (S15) where ψ is the twisting angle of PO₂ group. Using the bond polarizability derivative model, the polarization ratios of R_a and R_b of O = P = O stretch in pyridine ring is determined by taking $r_{P-O} = 0.54$ (corresponding Raman depolarization ration is 0.33) and $\tau = 120^{\circ}$. $$R_a = \frac{\beta_{aac}}{\beta_{ccc}} = \frac{1 + r - (1 - r)\cos\tau}{1 + r + (1 - r)\cos\tau}$$ (S16) $$R_b = \frac{\beta_{bbc}}{\beta_{ccc}} = \frac{2r}{1 + r + (1 - r)\cos\tau}$$ (S17) According to eqs.(S16) and (S17), the deduced susceptibility ratio $\chi_{ppp,PO_2^--ss}^{(2)} / \chi_{ssp,PO_2^--ss}^{(2)}$ at $\psi = 0^{\circ}$ can be plotted as a function of the tilt angle (shown in Figure S3). Figure S3 The deduced susceptibility ratio $\chi^{(2)}_{ppp,PO_2^--ss} / \chi^{(2)}_{ssp,PO_2^--ss}$ is plotted as a function of the tilt angles of PO_2^- group treating O = P = O bond as having C_{2v} symmetry. # 5. $R^{1105 \text{cm}^{-1}}$ and $R^{2970 \text{cm}^{-1}}$ of DMPE and DPPE monolayers Figure S4. $R^{1105\text{cm}^{-1}}$ and $R^{2970\text{cm}^{-1}}$ of A). DMPE and B). DPPE monolayers during the compression #### References - 1. Antonov L.; Nedeltcheva, D. Chem. Soc. Rev., 2000, 29, 217–227. - 2. Crisponi, G. React. Funct.l Polym., 1997, 34, 121-126. - 3. Ghasemi, J.; Niazi, A.; Kubista M.; Elbergali, A. Analyt. Chim. Acta, 2002, 455, 335–342. - 4. Shen, Y. R. The Principles of Nonlinear Optics; John Wiley& Sons: New York, 1984. - 5. Lambert, A. G.; Davies P. B.; Neivandt, D. J Appl. Spectrosc. Rev., 2005, 40, 103–145. - 6. Wang, H. F.; Gan, W.; Lu, R.; Rao, Y.; Wu, B. H. Int. Rev. Phys. Chem. 2005, 24, 191–256. - 7. Biswas N.; Umapathy, S.; J. Chem. Phys., 1997, 107, 7849-7858. - 8. Castellucci, E.; Sbrana G.; Verderame, F. D. J. Chem. Phys., 1969, 51, 3762-3770. - 9. Moskovits, M.; DiLella D. P.; Maynard, K. J. Langmuir, 1988, 4, 61-76. - 10. Golab, J. T.; Sprague, J. R.; Carron, K. T.; Schatz G. C.; Van Duyne, R. P. *J. Chem. Phys.*, **1988**, 88, 7942-7951. - 11. Chen, C. Y.; Liu, W. T.; Pagliusi, P.; Shen, Y. R. Macromolecules, 2009, 42, 2122-2126.