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Calculation details

The demonstration of eq. (7) in the main article needs some
development detailed here. Notation of the article will be sim-
plified.

We consider two species a and b, with a common set of ad-
sorption sites. The state density is given by g. These energies
are simply shifted for the two species:

ga(E) = g(E−∆a)

gb(E) = g(E−∆b)
(1)

For a single specie, energy states population Pa(E) follows the
Fermi-Dirac distribution for given T and µa:

Pa(E) = ga(E)/(1+ e−(E−µa)/kbT ) (2)

When the two species a and b are in competition, the com-
mon set of adsorption sites is shared, and effective states den-
sity is reduced by the population of the other.

Pa(E) = g′a(E)/(1+ e−(E−µa)/kbT )

with g′a(E) = ga(E)−Pb(E +∆b−∆a)
(3)

and

Pb(E) = g′b(E)/(1+ e−(E−µb)/kbT )

with g′b(E) = gb(E)−Pa(E +∆a−∆b)
(4)

Inserting eq.(4) in eq.(3), we obtain

Pa(E) =

g(E−∆Da)−
g(E−∆a)−Pa (E)

1+ e

µb−E +∆a−∆b

kbT

1+ e

µa−E
kbT

(5)

Setting the reduced values, m = µ/kbT , δ = ∆/kbT and ε =
E/kbT , this leads to

Pa(E) = g(E−∆a)/

1−
1

1+ emb−δb−ε+δa
+ ema−ε

1−
1

1+ emb−δb−ε+δa

(6)

This expression can be simplified:

Pa(E) =
g(E−∆a)

1+ ema−ε + eδb−δa+ma−mb
(7)

The expression for specie b is the same, inverting a and b.
The case of n+2 species can be treated the same way. Let’s

take species a and b taken separately, but both sharing there
adsorption site g with a finite number n of other species. We
suppose that their population can be written:

pa(E) =
g(E−∆a)

1+ e(µa−E)/kbT + ema−δa
n
∑

i=1
eδi−mi

(8)

and similarly for pb.

pb(E) =
g(E−∆b)

1+ e(µb−E)/kbT + emb−δb
n
∑

i=1
eδi−mi

(9)

We can remark that (8) and (9) are verified in the particular

case of equation (7) with
n
∑

i=1
eδi−mi = eδb−mb .

Considering that this two species have now to share their
adsorption sites, this leads to equations (3) and (4). We can
follow the development used previously for these two equa-

tions. We set the short notation ∑ =
n
∑

i=1
eδi−mi .

Pa(E) = g(E−∆a)/

1−
1

1+ emb−δb−ε+δa + emb−δb ∑
+ ema−ε + ema−δa ∑

1−
1

1+ emb−δb−ε+δb + emb−δb ∑

(10)

This expression can be simplified:

Pa(E) = g(E−∆a)/(
1+

(
ema−ε + ema−δa ∑

)(
1+ emb−δb−ε+δa + emb−δa ∑

)
emb−δb−ε+δa + emb−δb ∑

)
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then, remarking that(
ema−ε + ema−δa ∑

)
= ema−mb−δa+δb(emb−δb−ε+δa +emb−δb ∑)

we obtain

Pa(E) = g(E−∆a)/

(1+ema−mb−δa+δb(1+ emb−δb−ε+δa + emb−δb ∑))

and finally

Pa(E) = g(E−∆a)/

(1+ema−ε + ema−δa(eδb−mb +∑)
(11)

The terms concerning specie b can now be include in the
sum, to obtain the same equation that equation (8). This shows
that population of molecules a sharing their adsorption site
with a finite number n of other species, only shifted in energy,
can be written:

pa(E) =
g(E−∆a)

1+ e(µa−E)/kbT + e(µa−∆a)/kbT ×
n
∑

i=1
e(∆i−µi)/kbT

(12)
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