Branching Ratios for the Reactions of $\mathbf{O H}$ with Ethanol Amines used in Carbon Capture and the Potential Impact on Carcinogen Formation in the Emission Plume from a Carbon Capture Plant

L. Onel, ${ }^{* a}$ M.A. Blitz, ${ }^{\text {ab }}$ J. Breen, ${ }^{\text {a }}$ A.R. Rickard, ${ }^{\text {cd }}$ and P.W. Seakins, ${ }^{\text {ab }}$
${ }^{a}$ School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. Email: chmlo@leeds.ac.uk
${ }^{b}$ National Centre for Atmospheric Science (NCAS), University of Leeds, Leeds, LS2 9JT, UK
${ }^{c}$ Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
${ }^{d}$ National Centre for Atmospheric Science (NCAS), University of York, York, YO10 5DD, UK

Supplementary information

The notation of the quantities and the used abbreviations are the same as in main text.

1. $\mathrm{OH}+\mathrm{DMEA}$ reaction in the absence/presence of $\mathrm{O}_{\mathbf{2}}$

Figure S 1 shows the clear reduction in the observed bimolecular rate coefficient in the presence of excess oxygen.

Fig. S1 - Bimolecular plots for DMEA in the absence of $\mathrm{O}_{2},(7.44 \pm 0.44) \times 10^{-11} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$, black squares and line, and in the presence of $\mathrm{O}_{2},(5.07 \pm 0.26) \times 10^{-11} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$, red circles and line. Both studies carried out at 298 K and a total pressure of 14 Torr of $100 \% \mathrm{~N}_{2}$ or $90 \% \mathrm{~N}_{2}+10 \% \mathrm{O}_{2}$. A typical OH fluorescence decay trace and fit to equation E 1 in main text is shown in the inset.

2. Stern-Volmer plots for OH yield from $\mathrm{OH}+d_{4}$-DMEA reactions with $\mathrm{O}_{\mathbf{2}}$

Fig. S2 shows $1 / \Phi_{\mathrm{OH}} v s[\mathrm{M}]$ for d_{4}-DMEA $+\mathrm{OH} / \mathrm{O}_{2}$ system at 298 K . The result is similar to that for nondeuterated DMEA at room temperature. The Stern-Volmer parameters obtained by the unconstrained fits have overlapping error bars and the gradients of the fits at 298 K in Fig. S2 and Fig. 3 are close to each other (Table S1). The result suggests that, in both systems DMEA/O O_{2} and d_{4}-DMEA/ O_{2}, the OH regeneration is described by the same chemistry scheme (reactions R8-R10 in main text).

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Fig. S2 - Stern-Volmer plots for OH yield from d_{4}-DMEA $+\mathrm{OH} / \mathrm{O}_{2}$ system at 298 K , black squares and line. The fits are constrained through unity intercept.

Table S1 Stern-Volmer parameters for the $\mathrm{OH}+\mathrm{DMEA} / d_{4}$-DMEA reactions with O_{2} at 298 K.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

3. $\mathrm{OH} / \mathrm{OD}+d_{4}$-DMEA reaction with O_{2}. Determination of the dominant abstraction site of DMEA in reaction with $\mathbf{O H}$

The unconstrained Stern-Volmer plots for the $\mathrm{OH}+\mathrm{DMEA} / \mathrm{O}_{2}$ and $\mathrm{OH}+d_{4}$-DMEA/ O_{2} systems have intercept values which are consistent with unity OH yield at zero pressure (Table S1), i.e. there is not another route leading to a set of products excluding OH . This result shows that OH abstraction occurs at the $\mathrm{C}-\mathrm{H}$ sites next to amine group. In order to identify which one from the two α positions $\left(\mathrm{CH}_{2}\right.$ or $\left.\mathrm{CH}_{3}\right)$ is the dominant abstraction site we monitored the OH and OD radicals obtained by the photolysis at 248 nm of d_{4}-DMEA in the presence of oxygen (Fig. S3).

Fig. S3 Parallel measurements of OH (red circles and line) and OD (black circles and line) kinetic decays for $\mathrm{OH} / \mathrm{OD}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CD}_{2}\right)_{2} \mathrm{OH}$ reaction at 298 K and a total pressure of 15 Torr of $80 \% \mathrm{~N}_{2}+20 \% \mathrm{O}_{2}$. The OD signal was divided by the response factor for OD over OH of 1.86. ${ }^{1}$ The inset shows the OD signal magnified.

In Fig. S 3 the OH signal at time zero is ~ 250 times higher than the adjusted OD signal at time zero. The domination of the initial hydroxyl signal by OH following the photolysis of d_{4}-DMEA suggests that photolysis primarily occurs at the $\alpha \mathrm{CD}_{2}$ site. The generated carbon-

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015
centred radical reacts with O_{2} to form an activated peroxy radical which decomposes to produce OH as illustrated below:

A growth in the OD signal might be expected if OH abstracted from the CH_{3} groups as, in this case, the internal abstraction in the activated peroxy species might occur from both CD_{2} and CH_{3} groups as shown schematically below:

However, there is no growth in the OD signal (inset of Figure S3), hence the initial abstraction occurs from α methylene group.

4. $\mathrm{OH}+\mathrm{MEA} / \mathrm{MMEA} / \mathrm{MeOEA}$ reactions in the presence of $\mathrm{O}_{2} / \mathrm{NO}$

4.1. Determination of the dominant abstraction site of MEA in reaction with OH using the $\mathrm{OH}+\mathrm{MeOEA} / \mathrm{O}_{2}$ system

On the millisecond scale of the $\mathrm{OH}+\mathrm{MEA} / \mathrm{O}_{2} / \mathrm{NO}$ experiments, HO_{2} is generated through reaction R 5 of the α carbon-centred radical produced via R1a (main text) and/or through reaction RS 1 of the β carbon-centred radical generated via R 1 c . Reaction RS 1 is similar to the α-hydroxyalkyl $+\mathrm{O}_{2}$ reactions.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

$$
\begin{equation*}
\mathrm{HOCHCH}_{2} \mathrm{NH}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{OCHCH}_{2} \mathrm{NH}_{2}+\mathrm{HO}_{2} \tag{RS1}
\end{equation*}
$$

In order to determine which one from the two C - H positions in MEA is the dominant abstraction site in reaction with OH we determined if the HO_{2} yield is altered by using MeOEA $\left(\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$ instead of MEA $\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$ as, in the $\mathrm{OH}+\mathrm{MeOEA} / \mathrm{O}_{2}$ system, initial abstraction at β position cannot result in formation of HO_{2}. The resultant $\Phi_{\mathrm{HO} 2}$, меОеА $=0.69 \pm 0.09$ at 20 Torr and $\Phi_{\text {НО2, МеОеА }}=0.68 \pm 0.06$ at 40 Torr are within the error limits of $\Phi_{\mathrm{HO} 2, \text { MEA }}=0.62 \pm 0.06$ in the range $20-150$ Torr (Table 2 in main text). Therefore, the results strongly suggest the dominant H -abstraction site of MEA is in the α position.

4.2. Determination of the HO_{2} yield

In the presence of NO reaction R6 regenerates OH in the $\mathrm{OH}+\mathrm{MEA} / \mathrm{MMEA} / \mathrm{MeOEA} / \mathrm{O}_{2}$ systems and the OH decays are biexponential in nature (see the example shown in the inset of Fig. S4). The method for assign HO_{2} yield was described previously ${ }^{1}$ and is illustrated schematically:

The biexponential OH decays were fitted to the solution of the rate equations for reactions $\mathrm{R} 1 \mathrm{a}, \mathrm{R} 1 \mathrm{~b}$ and R6 to determine the pseudo-first-order rate coefficients $k^{\prime}{ }_{1 \mathrm{a}}$ and $k^{\prime}{ }_{1 \mathrm{~b}}$ and $k^{\prime}{ }_{6}{ }^{1}{ }^{1}$ The determined parameters were used to assign the HO_{2} yield, $\Phi_{\text {Но2 }}$ and hence $r_{1 \mathrm{a}}$ and $r_{1 \mathrm{~b}}$:

$$
\begin{equation*}
\Phi_{\mathrm{HO2}}=r_{1 \mathrm{a}}=\frac{k_{1 \mathrm{a}}^{\prime}}{k_{1}^{\prime}}=1-\frac{k_{1 \mathrm{~b}}^{\prime}}{k_{1}^{\prime}}=1-r_{1 \mathrm{~b}} \tag{equationS1}
\end{equation*}
$$

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

The parameter $k^{\prime}{ }_{6}$ allowed the determination of the bimolecular rate coefficient of the NO reaction with HO_{2} as the gradient of the linear fit of k_{6} vs [NO] (see Fig. S4 as an example). The gradient of the bimolecular plot shown in Fig. S4, $(9.95 \pm 0.35) \times 10^{-12} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$, is consistent with the recommendation of Atkinson et al., $(8.8 \pm 2.4) \times 10^{-12}$ cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$, and with our previous determinations: $(1.11 \pm 0.14) \times 10^{-11} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ for $\mathrm{OH}+$ methylamine $/ \mathrm{NO} / \mathrm{O}_{2}$ system, $(1.13 \pm 0.11) \times 10^{-11}$ for $\mathrm{OH}+$ methanol/NO/ O_{2} system and $(1.05 \pm 0.12) \times 10^{-11} \mathrm{~cm}^{3}$ molecule $^{-1} \mathrm{~s}^{-1}$ for $\mathrm{OH}+$ ethanol $/ \mathrm{NO} / \mathrm{O}_{2}$ system. ${ }^{1}$

Fig. S4 Bimolecular plot for the reaction of NO with HO_{2} generated in $\mathrm{OH}+\mathrm{MEA} / \mathrm{O}_{2}$ system. The inset shows the single exponential OH decay in the absence of NO (black squares) and the biexponential decay in the presence of 6.97×10^{14} molecule $\mathrm{cm}^{-3} \mathrm{NO}$ (red circles). Experiments performed at 298 K and a total pressure of 20 Torr of $91 \% \mathrm{~N}_{2}+9 \% \mathrm{O}_{2}$.

At 248 nm amines photolyse to form H atoms. The subsequent chemistry of H atoms was found to produce a small additional OH signal in the $\mathrm{OH}+\mathrm{DMA} / \mathrm{NO} / \mathrm{O}_{2}$ and $\mathrm{OH}+$ $\mathrm{PZ} / \mathrm{NO} / \mathrm{O}_{2}$ systems. ${ }^{1,3}$ However, separate studies showed that the 248 nm cross sections for H atom formation, $\sigma_{248 \mathrm{~nm}, \mathrm{H}}$, of MEA and MMEA are at least one order of magnitude smaller

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015
than $\sigma_{248 n \mathrm{n}, \mathrm{H}}$ of DMA ($10^{-20} \mathrm{~cm}^{2}$ molecule ${ }^{-1}$ orders of magnitude), and at least two orders of magnitude smaller compared to $\sigma_{248 \mathrm{~nm}, \mathrm{H}}$ of $\mathrm{PZ}\left(10^{-19} \mathrm{~cm}^{2}\right.$ molecule ${ }^{-1}$ orders of magnitude). ${ }^{4}$

Therefore, the photolytic generation of H atoms was negligible in our experiments and did not affect the results obtained for the $\mathrm{OH}+$ MEA/MMEA reactions in the presence of $\mathrm{NO} / \mathrm{O}_{2}$.

5. Structure Activity Relationship (SAR) calculations

Table S2. Room temperature rate coefficients and branching ratios in the reaction of OH with MEA and MMEA determined in this work and calculated using SARs

	$\begin{gathered} \hline \text { Rate coefficients } \\ 10^{-11} \mathrm{~cm}^{3} \text { molecule }^{-1} \mathrm{~s}^{-1} \end{gathered}$		Branching ratios			
			Calculated ${ }^{\text {b }}$			
	k_{OH}	$k_{\mathrm{OH}}{ }^{b}$	$r_{\text {OC-H }}$	$r_{\beta \mathrm{C}-\mathrm{H}}$	$r_{\mathrm{N}-\mathrm{H}} /$ N -attack ${ }^{c}$	$r_{\text {N-CH3 }}$
MEA	$\begin{aligned} & \hline 7.61 \pm \\ & 0.76^{5} \end{aligned}$	4.04	0.45	0.08	0.47	-
MMEA	$\begin{aligned} & 8.26 \pm \\ & 0.82^{a} \end{aligned}$	8.45	0.21	0.04	0.74	0.01
DMEA	$\begin{aligned} & 7.29 \pm \\ & 0.72^{a} \end{aligned}$	6.95	0.26	0.05	0.66	0.03
			Determined experimentally			
MEA			$\begin{aligned} & 0.62 \pm \\ & 0.06 \end{aligned}$		0.38 ± 0.06	
MMEA			$\begin{aligned} & 0.48 \pm \\ & 0.03 \end{aligned}$		0.52 ± 0.06	
DMEA			~ 1.00		-	

${ }^{a}$ This work
${ }^{b}$ SAR calculations. ${ }^{6-8} \mathrm{OH}$ rate coefficients and branching ratios were calculated using a combination of the following parameters: group rate coefficients for H atom abstraction from C-H bonds and - OH groups ($k_{\text {prim, }} k_{\text {sec }}, k_{\text {tert }}$ and k_{OH}) and substituent group factors $(F(X)$) are taken from Ziemann and Atkinson. ${ }^{6}$ The SAR parameters for abstraction at an N-H site, $k_{\text {RNH } 2}$ (MEA) and $k_{\text {R2NH }}$ (MMEA), and for the OH attack at the nitrogen atom, $k_{\text {R3N }}$ (DMEA), along with the $F(X)$ values for groups $-\mathrm{NH}_{2},>\mathrm{NH}$ and $-\mathrm{N}<$ are taken from Nielsen et al. ${ }^{7}$
${ }^{c} \mathrm{~N}$-attack results in an initial addition of OH through H -bonding to the nitrogen lonepair, forming a stable pre-reaction adduct. H -abstraction within the pre-reaction adduct then leads to $\mathrm{H}_{2} \mathrm{O}$ and a radical species. Caution is taken when using hydrogen abstraction SARs for amines for reasons given in Nielsen et al. ${ }^{7}$ The formation of pre-reaction OH -amine adducts in which the OH radical is H -bonded to the nitrogen lone-pair results in a negative Arrhenius activation energy, and low energy barrier or barriers to reaction below the energy of reactants.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

6. Master Equation Solver for Multi Energy well Reactions (MESMER) calculations

The yield of HO_{2} radical in $\mathrm{HOCH}_{2} \mathrm{CHNH}_{2}+\mathrm{O}_{2}$ reaction, Γ_{HO}, has been calculated in the range of $20-150$ Torr using the experimental branching ratios $r_{1 \mathrm{a}}$ for MEA +OH reaction (Table 2 in main text). The HO_{2} yield at 20 Torr was assumed equal to unity on average, $\bar{\Gamma}_{\text {HO2(20Tor) }}=1$, as in our previous MESMER study of the O_{2} reactions with RCHNHR radicals. ${ }^{1}$ This assumption was also supported by the experimental finding that the HO_{2} yield in the MEA +OH reaction is practically unchanged over $20-150$ Torr. $\Gamma_{\mathrm{HO} 2}$ at 60 and 150 Torr was determined as follows:

$$
\Gamma_{\mathrm{HO} 2(p)}=r_{(1 \mathrm{a}, p)} / \bar{r}_{(1 \mathrm{a}, 20 \mathrm{Torr})}
$$

where $\bar{r}_{(1 a, 20 \text { Torr })}$ is the mean of the experimental values of $r_{1 \mathrm{a}}$ at 20 Torr.
G4 potential energy surface calculations ${ }^{9}$ have been used in a master equation fit of $\Gamma_{\mathrm{HO} 2}$ calculated using equation S2. The parameter $\Delta E_{\text {down }}$ for N_{2} was fixed to $270 \mathrm{~cm}^{-1}$ as in our previous calculations for the $\mathrm{O}_{2}+\mathrm{RCHNHR}$ reactions and in very good agreement with various reported values of $\Delta E_{\text {down }}$ for $\mathrm{N}_{2} \cdot{ }^{10-12}$ The energy barrier between peroxy radical and post-reaction imine- HO_{2} complex was floated starting from the $a b$ initio value, $90.42 \mathrm{~kJ} \mathrm{~mol}^{-}$ ${ }^{1}$. The fit found a lower transition state energy, $82.18 \pm 0.87 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The level of agreement between the reaction barrier found by fitting and the $a b$ initio result is $\sim 8 \mathrm{~kJ} \mathrm{~mol}^{-1}$; a slightly lower level of agreement between the MESMER result and the $a b$ initio value for $\mathrm{CH}_{3} \mathrm{CHNH}_{2}+\mathrm{O}_{2}$ reaction of $\sim 6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ was found previously. ${ }^{1}$ We attribute this lower level of agreement to the larger uncertainty in the G4 theory computation of the energy of the transition state for larger $\mathrm{HOCH}_{2} \mathrm{CHNH}_{2}+\mathrm{O}_{2}$ system. Typical errors in high level ab initio calculations of stable species are of the order of $2-4 \mathrm{~kJ} \mathrm{~mol}^{-1}$; calculations of transition states will have a higher level of uncertainty and so the observed discrepancy of $6-8 \mathrm{~kJ} \mathrm{~mol}^{-}$

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015
${ }^{1}$ between the fitted values and the calculated energy of the transition state is not unreasonable.

The energy barrier obtained by fitting was used in MESMER numerical simulations to assign $\Gamma_{\mathrm{HO2}(1 \mathrm{~atm})}=0.67 \pm 0.18$ (Fig. 4). The error limits for $\Gamma_{\mathrm{HO} 2(1 \mathrm{~atm})}$ reported here were determined assuming a typical error in the energy barrier calculation of $\pm 4 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Similar atmospheric pressure yields of HO_{2} were found for the $\mathrm{CH}_{3} \mathrm{CHNH}_{2}+\mathrm{O}_{2}$ reaction: $0.50 \pm$ 0.18^{1} and $\sim 0.60 .{ }^{10}$

7. Atmospheric modelling

7.1. MEA chemistry scheme

Table S3. MEA $\left(\mathrm{RCH}_{2} \mathrm{NH}_{2}\right.$, where $\left.\mathrm{R}=\mathrm{HOCH}_{2}\right)$ oxidation reactions and phase transfer processes incorporated in the atmospheric model

Reaction	Rate coefficient / $\begin{gathered} \mathrm{cm}^{3} \text { molecule }^{-1} \mathrm{~s}^{-1} \\ \text { or } \mathrm{s}^{-1} \end{gathered}$	Reference
Gas phase reactions		
$\mathrm{RCH}_{2} \mathrm{NH}_{2}+\mathrm{OH} \rightarrow \mathrm{RCHNH}_{2}$	$0.62 \times \mathrm{k}_{\mathrm{OH}}{ }^{a}$	This work and Onel et al. ${ }^{5}$
$\mathrm{RCH}_{2} \mathrm{NH}_{2}+\mathrm{OH} \rightarrow \mathrm{RCH}_{2} \mathrm{NH}$	$0.38 \times \mathrm{k}_{\mathrm{OH}}{ }^{a}$	This work and Onel et al. ${ }^{5}$
$\mathrm{RCHNH}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{RCHNH}+\mathrm{HO}_{2}$	$0.67 \times \mathrm{k}_{2}{ }^{\text {b }}$	This work and Rissanen et al. ${ }^{10}$
$\mathrm{RCHNH}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{RCH}\left(\mathrm{O}_{2}\right) \mathrm{NH}_{2}$	$0.33 \times \mathrm{k}_{2}{ }^{\text {b }}$	This work and Rissanen et al. ${ }^{10}$

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

$\begin{aligned} & \mathrm{RCH}\left(\mathrm{O}_{2}\right) \mathrm{NH}_{2}+\mathrm{HO}_{2} \rightarrow \mathrm{RCH}\left(\mathrm{O}_{2} \mathrm{H}\right) \mathrm{NH}_{2} \\ & +\mathrm{O}_{2} \end{aligned}$	5.7×10^{-12}	Considered equal to the rate coefficient for the $\mathrm{CH}_{3} \mathrm{O}_{2}+$ HO_{2} reaction ${ }^{13}$
$\begin{aligned} & \mathrm{RCH}\left(\mathrm{O}_{2}\right) \mathrm{NH}_{2}+\mathrm{NO} \rightarrow \mathrm{RCH}(\mathrm{O}) \mathrm{NH}_{2}+ \\ & \mathrm{NO}_{2} \end{aligned}$	8.0×10^{-12}	Considered equal to the rate coefficient for the $\mathrm{CH}_{3} \mathrm{O}_{2}+$ NO reaction ${ }^{13}$
$\mathrm{RCH}(\mathrm{O}) \mathrm{NH}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{RCONH}_{2}+\mathrm{HO}_{2}$	2.4×10^{-15}	Karl et al. ${ }^{14}$
$\begin{aligned} & \mathrm{RCH}(\mathrm{O}) \mathrm{NH}_{2} \rightarrow \mathrm{HCONH}_{2}+\mathrm{HCHO}+ \\ & \mathrm{HO}_{2} \end{aligned}$	2.0×10^{5}	Karl et al. ${ }^{14}$
$\mathrm{HCONH}_{2}+\mathrm{OH} \rightarrow \mathrm{HNCO}+\mathrm{HO}_{2}$	4.5×10^{-12}	Estimated ${ }^{\text {c }}$
$\mathrm{RCONH}_{2}+\mathrm{OH} \rightarrow \mathrm{HCOCONH}_{2}+\mathrm{HO}_{2}$	4.6×10^{-12}	Karl et al. ${ }^{14}$
$\mathrm{RCH}_{2} \mathrm{NH}+\mathrm{NO}_{2} \rightarrow \mathrm{RCH}_{2} \mathrm{NHNO}_{2}$	$k_{\mathrm{NO}_{2}}{ }^{\text {d }}$	Lazarou et al. ${ }^{15}$
$\mathrm{RCH}_{2} \mathrm{NH}+\mathrm{NO}_{2} \rightarrow \mathrm{RCHNH}+\mathrm{HONO}$	$0.22 \times k_{\mathrm{NO}_{2}{ }^{\text {d }} \text { d }}$	Lindley et al. ${ }^{16}$ and Lazarou et al. ${ }^{15}$
$\mathrm{RCH}_{2} \mathrm{NH}+\mathrm{NO} \rightarrow \mathrm{RCH}_{2} \mathrm{NHNO}$	$k_{\text {NO }}{ }^{e}$	Lazarou et al. ${ }^{15}$
$\mathrm{RCH}_{2} \mathrm{NH}+\mathrm{O}_{2} \rightarrow \mathrm{RCHNH}+\mathrm{HO}_{2}$	$3.9 \times 10^{-7} \times k_{\mathrm{NO}_{2}}{ }^{d}$	Lindley et al. ${ }^{16}$ and Lazarou et al. ${ }^{15}$
$\mathrm{RCH}_{2} \mathrm{NHNO}_{2}+\mathrm{OH} \rightarrow \mathrm{RCONHNO}_{2}$	$3.5 \times 10^{-12 f}$	Maguta et al. ${ }^{17}$
$\mathrm{RCH}_{2} \mathrm{NHNO} \rightarrow \mathrm{RCH}_{2} \mathrm{NH}+\mathrm{NO}$	$0.34 \times j_{\text {NO2 }}$	Nielsen et al. ${ }^{\text {² }}$

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Phase transfer and aqueous reactions with OH		
$\mathrm{RCH}_{2} \mathrm{NH}_{2} \rightarrow\left(\mathrm{RCH}_{2} \mathrm{NH}_{2}\right)_{\text {aq }}$	-	This work ${ }^{\text {g }}$
$\left(\mathrm{RCH}_{2} \mathrm{NH}_{2}\right)_{\mathrm{aq}} \rightarrow \mathrm{RCH}_{2} \mathrm{NH}_{2}$	-	This work ${ }^{h}$
$\left(\mathrm{RCH}_{2} \mathrm{NH}_{2}\right)_{\mathrm{aq}}+(\mathrm{OH})_{\mathrm{aq}} \rightarrow(\mathrm{Pl})_{\mathrm{aq}}$	$k_{\mathrm{aq}}^{\mathrm{MEA}} \times[\mathrm{OH}]_{\mathrm{aq}}^{\mathrm{av}}$	i
$\mathrm{RCH}_{2} \mathrm{NHNO}_{2} \rightarrow\left(\mathrm{RCH}_{2} \mathrm{NHNO}_{2}\right)_{\mathrm{aq}}$		This work ${ }^{\text {g }}$
$\left(\mathrm{RCH}_{2} \mathrm{NHNO}_{2}\right)_{\mathrm{aq}} \rightarrow \mathrm{RCH}_{2} \mathrm{NHNO}_{2}$	-	This work ${ }^{h}$
$\left(\mathrm{RCH}_{2} \mathrm{NHNO}_{2}\right)_{\mathrm{aq}}+(\mathrm{OH})_{\mathrm{aq}} \rightarrow(\mathrm{P} 2)_{\mathrm{aq}}$	$k_{\text {aq }}^{\mathrm{RNNO} 2} \times[\mathrm{OH}]_{\mathrm{aq}}^{\mathrm{av}}$	i
$\mathrm{RCH}_{2} \mathrm{NHNO} \rightarrow\left(\mathrm{RCH}_{2} \mathrm{NHNO}\right)_{\mathrm{aq}}$	-	This work ${ }^{\text {g }}$
$\left(\mathrm{RCH}_{2} \mathrm{NHNO}\right)_{\mathrm{aq}} \rightarrow \mathrm{RCH}_{2} \mathrm{NHNO}$		This work ${ }^{h}$
$\left(\mathrm{RCH}_{2} \mathrm{NHNO}\right)_{\mathrm{aq}}+(\mathrm{OH})_{\mathrm{aq}} \rightarrow(\mathrm{P} 3)_{\mathrm{aq}}$	$k_{\mathrm{aq}}^{\mathrm{RNNO}} \times[\mathrm{OH}]_{\mathrm{aq}}^{\mathrm{av}}$	i
${ }^{a} k_{\mathrm{OH}}=7.6 \times 10^{-11} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-15}$ ${ }^{b} k_{\mathrm{O}_{2}}=5 \times 10^{-11} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$. Estimated using the profile of the rate coefficient for the reaction of O_{2} with $\mathrm{CH}_{2} \mathrm{NH}_{2}$ vs pressure reported for N_{2} by Rissanen et al. ${ }^{10}$ ${ }^{c}$ Calculated as ten times lower than the rate coefficient for the $\mathrm{HCONH}_{2}+\mathrm{Cl}$ reaction based on the kinetic data reviewed by Nielsen et al. showing that the rate coefficients for the amide +OH reactions are one order of magnitude lower than the rate coefficients for the amide +Cl reactions. ${ }^{7}$ ${ }^{d} k_{\mathrm{NO}_{2}}=3.2 \times 10^{-13} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$. Determined experimentally for the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}+\mathrm{NO}_{2}$ $\rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NNO}_{2}$ reaction by Lazarou et al. ${ }^{15}$ ${ }^{e} k_{\mathrm{NO}}=8.5 \times 10^{-14} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$. Determined experimentally for the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}+\mathrm{NO} \rightarrow$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NNO}$ reaction by Lazarou et al. ${ }^{15}$ ${ }^{f}$ Equal to the rate coefficient for the $\mathrm{OH}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NNO}_{2}$ reaction ${ }^{17}$ ${ }^{g}$ Calculated using equation E3 in main text. ${ }^{h}$ Calculated using equation E 4 in main text. ${ }^{i} k_{\mathrm{aq}}^{\mathrm{MEA}}=3 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1},{ }^{7} k_{\mathrm{aq}}^{\mathrm{RNNO} 2}=5.4 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ as measured for the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NNO}_{2}+\mathrm{OH}$ reaction in water by Mezyk et al. ${ }^{18}$ and $k_{\mathrm{aq}}^{\mathrm{RNNO}}$ is equal to the mean of the measurements of Landsman et al. ${ }^{19}$ Wink et al. ${ }^{20}$ and Lee et al. ${ }^{21}$ for the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NNO}+\mathrm{OH}$ reaction in water, $4.0 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1} .[\mathrm{OH}]_{\mathrm{aq}}^{\text {av }}$ is the mean concentration of OH in either wet aerosols, $10^{-13} \mathrm{M}$, or cloud droplets, $2 \times 10^{-12} \mathrm{M}$, in maritime environment. ${ }^{7}$		

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

7.2. Details on the parametrisation of heterogeneous uptake

The uptake coefficients for MEA, $\mathrm{R}_{2} \mathrm{~N}-\mathrm{NO}_{2}$ and $\mathrm{R}_{2} \mathrm{~N}-\mathrm{NO}$ are not currently known. In line with the parametrisation of the wet deposition included in the chemical transport model used by Karl et al. to study the environmental impact of carbon capture emissions of MEA, ${ }^{22}$ we used HNO_{3} as a model compound in the parametrisation of heterogeneous uptake. Therefore, in our work the uptake coefficients for MEA, $\mathrm{R}_{2} \mathrm{~N}-\mathrm{NO}_{2}$ and $\mathrm{R}_{2} \mathrm{~N}-\mathrm{NO}$ were considered equal to the uptake coefficient for HNO_{3}, calculated as the mean of the values at room temperature reported by Van Doren et al., ${ }^{23}$ Ponche et al. ${ }^{24}$ and Schütze and Herrmann, ${ }^{25} \gamma_{\mathrm{HNO} 3}=0.07 \pm$ 0.04 .

The gas diffusion coefficient, $D_{\mathrm{i}}^{\mathrm{g}}$, in equation E3 (main text) is given by equation S 4 .

$$
\begin{equation*}
D_{\mathrm{i}}^{\mathrm{g}}=\frac{3}{8 N_{\mathrm{A}}\left(d_{\mathrm{i}}^{\mathrm{g}}\right)^{2} \rho_{\text {air }}} \sqrt{\frac{R T M_{\text {air }}}{2 \pi}\left(\frac{M_{\mathrm{i}}^{\mathrm{g}}+M_{\text {air }}}{M_{\mathrm{i}}^{\mathrm{g}}}\right)} \tag{equationS4}
\end{equation*}
$$

Here N_{A} is Avogadro's number, $d_{\mathrm{i}}^{\mathrm{g}}$ is the diameter of the gas molecule $i, \rho_{\text {air }}$ is the density of air, R is the gas constant, T is the temperature (K), $M_{\text {air }}$ and $M_{\mathrm{i}}^{\mathrm{g}}$ are the molar masses of air and the gas i, respectively. The mean molecular speed $\bar{c}_{\mathrm{i}}^{\mathrm{g}}$ is given by equation S 5 .

$$
\begin{equation*}
\bar{c}_{\mathrm{i}}^{\mathrm{g}}=\sqrt{\frac{8 R T}{\pi M_{\mathrm{i}}^{\mathrm{g}}}} \tag{equationS5}
\end{equation*}
$$

7.3. Details on the parametrisation describing the plume dispersion

The plume width at time $t, y(t)$, depends on the width at time zero, $y(0)$, and the horizontal diffusion coefficient, Ky (equation E7 in main text). Due to less turbulent boundary layer at

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.

 This journal is © the Owner Societies 2015night than at day, the plume emitted at midnight expands less than the plumes emitted at day. ${ }^{26}$ For the emission at day time equation E7 was used to fit the time series of the width of the Cumberland power plant plume studied by Ryerson et al. ${ }^{27}$ (Figure S5) in order to determine the parameter Ky . The plume widths were estimated using profiles of the $\mathrm{NO}_{\mathrm{x}}, \mathrm{O}_{3}$ and SO_{2} mixing ratios observed by these authors across the downwind direction. During the fitting, the parameter $y(0)$ was fixed at 2.5 m and 100 m , respectively, while the parameter K_{y} was floated. In both cases, the fit led to $K_{y}=3034 \pm 301 \mathrm{~m}^{2} \mathrm{~s}^{-1}$. Therefore, a value of $3034 \mathrm{~m}^{2}$ s^{-1} was used in numerical simulations.

For the emission at night equation E7 was fit to the total width of the plumes emitted at Oklaunion and Paris power plants vs. transport time to determine $K y$. The total width of the plumes, $y(\mathrm{t})$, was calculated using full-width at half maximum, $F W H M(t)$, of the Gaussian fit to SO_{2} plumes, ${ }^{26}$ as it follows ${ }^{28}$

$$
\begin{align*}
& \sigma(t)=\frac{F W H M(t)}{2 \sqrt{2 \ln 2}} \tag{equationS6}\\
& y(t)=6 \sigma(t)
\end{align*}
$$

(equation S 7)
where $\sigma(t)$ is the standard deviation.

The mean of the values of the horizontal diffusion coefficient for the Oklaunion and Parish plumes, $K y=573 \pm 102 \mathrm{~m}^{2} \mathrm{~s}^{-1}$, was used in the numerical simulations started at midnight.

As the time zero in numerical simulations corresponded to 10 min after emission, for day time emissions $y(0)$ in the simulations equalled $y(10 \mathrm{~min})$ in Fig. S5, 3816 m and for the midnight emission $y(0)$ in simulations equalled $y(10 \mathrm{~min})$ in Fig. S6, 1658 m .

Fig. S5 Fit of the plume width emitted at day from Cumberland power plant ${ }^{27}$ using equation E7 in main text. The error bars represent standard errors of a series of estimations obtained using the mixing ratio profiles for $\mathrm{NO}_{\mathrm{x}}, \mathrm{O}_{3}$ and SO_{2} reported by Ryerson et al. ${ }^{27}$

Fig. S6 Fit of the SO_{2} plume width emitted at night from Oklaunion (black squares and line) and Parish (red circles and line) power plants. ${ }^{26}$

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015
7.4. Average diurnal cycles of key species measured for the North-westerly wind sector at Weybourne, September 2002 ${ }^{29,30}$

Fig. S7. Hourly averaged diurnal cycle of NO_{2}. Concentration of NO_{2} in parts per billion by volume (ppbv).

Fig. S8. Hourly averaged diurnal cycle of NO. Concentration of NO in parts per billion by volume (ppbv).

Fig. S9. Hourly averaged diurnal cycle of O_{3}. Concentration of O_{3} in parts per billion by volume (ppbv).

Fig. S10 Diurnal cycle of OH radical generated by running the background model described in the main text for four days. Numerical simulations starts at 10:00.

Fig. S11 One minute averaged diurnal cycle of ozone measured at Weybourne from 17 to 29 September 2002 used in the numerical simulations started at 14:00.

Fig. S12 NO concentration generated by numerical simulations (see main text) for emission at 14:00. Next day after emission, at $\sim 07: 00$ the concentration of NO within the plume equals the ambient concentration of NO, constrained to the one minute averaged diurnal cycle measured at Weybourne from 17 to 29 September 2002.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

7.5. Rates of MEA losses for emission at midnight

(a)

(b)

Fig. S13 Loss rates of MEA vs. time after emission from PCCC plant at 00:00 under cloud free conditions: dispersion rate (blue solid line) and rate of the $\mathrm{OH}+$ MEA reaction (black dash line): (a) plot over the first four hours after emission; (b) plot over 04:00 - 10:00. Model does not include the $\mathrm{NO}_{3}+$ MEA reaction. With the exception of the first minute, when the uptake rate of MEA is $\sim 10^{6}$ molecule $\mathrm{cm}^{-3} \mathrm{~s}^{-1}$, almost no uptake of MEA onto aerosols occurs as Henry's law is practically fulfilled at almost all the simulation times.

1. L. Onel, M. Blitz, M. Dryden, L. Thonger and P. Seakins, Environmental Science \& Technology, 2014, 48, 9935-9942.
2. R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi and J. Troe, Atmospheric Chemistry and Physics, 2004, 4, 1461-1738.
3. L. Onel, M. Dryden, M. A. Blitz and P. W. Seakins, Environmental Science \& Technology Letters, 2014, 1, 367-371.
4. L. Onel, M. A. Blitz, M. Dryden and P. W. Seakins.
5. L. Onel, M. A. Blitz and P. W. Seakins, J. Phys. Chem. Lett., 2012, 3, 853-856.
6. P. J. Ziemann and R. Atkinson, Chem. Soc. Rev., 2012, 41, 6582-6605.
7. C. J. Nielsen, H. Herrmann and C. Weller, Chem. Soc. Rev., 2012, 41, 6684-6704.
8. E. S. C. Kwok and R. Atkinson, Atmos. Environ., 1995, 29, 1685-1695.
9. C. J. Nielsen, personal communication.
10. M. P. Rissanen, A. J. Eskola, T. L. Nguyen, J. R. Barker, J. Liu, J. Liu, E. Halme and R. S. Timonen, J. Phys. Chem. A, 2014, 118, 2176-2186.
11. S. A. Carr, D. R. Glowacki, C.-H. Liang, M. T. Baeza-Romero, M. A. Blitz, M. J. Pilling and P. W. Seakins, Journal of Physical Chemistry A, 2011, 115, 1069-1085.
12. K. W. McKee, M. A. Blitz, P. A. Cleary, D. R. Glowacki, M. J. Pilling, P. W. Seakins and L. Wang, Journal of Physical Chemistry A, 2007, 111, 4043-4055.
13. http://mcm.leeds.ac.uk/MCM.
14. M. Karl, C. Dye, N. Schmidbauer, A. Wisthaler, T. Mikoviny, B. D'Anna, M. Muller, E. Borras, E. Clemente, A. Munoz, R. Porras, M. Rodenas, M. Vazquez and T. Brauers, Atmos. Chem. Phys., 2012, 12, 1881-1901.
15. Y. G. Lazarou, K. G. Kambanis and P. Papagiannakopoulos, J. Phys. Chem., 1994, 98, 21102115.
16. C. R. C. Lindley, J. G. Calvert and J. H. Shaw, Chemical Physics Letters, 1979, 67, 57-62.
17. M. M. Maguta, M. Aursnes, A. J. C. Bunkan, K. Edelen, T. Mikoviny, C. J. Nielsen, Y. Stenstrom, Y. Tang and A. Wisthaler, J. Phys. Chem. A, 2014, 118, 3450-3462.
18. S. P. Mezyk, D. B. Ewing, J. J. Kiddle and K. P. Madden, J. Phys. Chem. A, 2006, 110, 47324737.
19. N. A. Landsman, K. L. Swancutt, C. N. Bradford, C. R. Cox, J. J. Kiddle and S. P. Mezyk, Environ. Sci. Technol., 2007, 41, 5818-5823.
20. D. A. Wink, R. W. Nims, M. F. Desrosiers, P. C. Ford and L. K. Keefer, Chem. Res. Toxicol., 1991, 4, 510-512.
21. C. Lee, J. Yoon and U. Von Gunten, Water Res., 2007, 41, 581-590.
22. M. Karl, N. Castell, D. Simpson, S. Solberg, J. Starrfelt, T. Svendby, S. E. Walker and R. F. Wright, Atmos. Chem. Phys., 2014, 14, 8533-8557.
23. J. M. Van Doren, L. R. Watson, P. Davidovits, D. R. Worsnop, M. S. Zahniser and C. E. Kolb, J. Phys. Chem., 1990, 94, 3265-3269.
24. J. L. Ponche, C. George and P. Mirabel, J. Atmos. Chem., 1993, 16, 1-21.
25. M. Schütze and H. Herrmann, Phys. Chem. Chem. Phys., 2002, 4, 60-67.
26. S. S. Brown, W. P. Dube, P. Karamchandani, G. Yarwood, J. Peischl, T. B. Ryerson, J. A. Neuman, J. B. Nowak, J. S. Holloway, R. A. Washenfelder, C. A. Brock, G. J. Frost, M. Trainer, D. D. Parrish, F. C. Fehsenfeld and A. R. Ravishankara, J. Geophys. Res. Atmos., 2012, 117.
27. T. B. Ryerson, M. P. Buhr, G. J. Frost, P. D. Goldan, J. S. Holloway, G. Hubler, B. T. Jobson, W. C. Kuster, S. A. McKeen, D. D. Parrish, J. M. Roberts, D. T. Sueper, M. Trainer, J. Williams and F. C. Fehsenfeld, Journal of Geophysical Research-Atmospheres, 1998, 103, 22569-22583.
28. P. R. Bevington and D. K. Robinson, Data reduction and error analysis, McGraw-Hill, New York, 2003.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015
29. Z. L. Fleming, personal communication of diurnal cycles of $\mathrm{O}_{3}, \mathrm{NO}$ and NO_{2} measured at Weybourne between 17 and 29 September 2002.
30. Z. L. Fleming, P. S. Monks, A. R. Rickard, B. J. Bandy, N. Brough, T. J. Green, C. E. Reeves and S. A. Penkett, Atmos. Chem. Phys., 2006, 6, 5415-5433.

