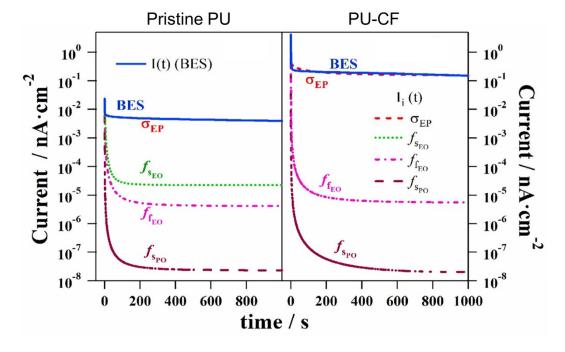
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Title: Dielectric relaxations of polyether-based polyurethanescontaining ionic liquids as antistatic agents

Author names and affiliations:

A. Tsurumaki, a,b,c F. Bertasi, K. Vezzù, E. Negro, V. Di Noto, de and H. Ohno b,c,*

- ^a Global Innovation Research Organization, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
- ^b Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- ^c Functional Ionic Liquid Laboratories, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Japan.
- ^dDepartment of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova (PD), Italy.
- ^eDepartment of Industrial Engineering, University of Padova, Via Gradenigo, 6/a 35131 Padova (PD), Italy


I(t) vs. t profiles

The I(t) vs. t curves are obtained (Fig. S1), as reported elsewhere¹ by inverse Fourier transformation of the r.t. complex permittivity in the frequency-domain, $\varepsilon^*(\omega)$, using equation:

$$I(t) = C_0 V_0 \cdot \frac{1}{2\pi} \int_{-\infty}^{+\infty} \varepsilon^*(\omega) e^{i\omega t} d\omega = C_0 V_0 \cdot F^{-1} [\varepsilon^*(\omega)]$$

$$t > 0 \qquad \text{(Eq. S1)}$$

where C_0 is the geometric capacitance of the sample, V_0 is the height of the applied step voltage and $\varepsilon^*(\omega)$ is the complex permittivity given by Eq. 3. in the text. In Fig. S1, the overall I(t) profiles of PU and PU-CF samples are compared with the contributions of electrode polarization and dielectric relaxation phenomena.

Fig. S1. Dependence on t of the profiles of overall I(t) (BES measurement), electrode polarization ($I\sigma_{EP}(t)$) and dielectric relaxations ($I_i(t)$, with $i = f_{sEO}$, f_{fEO} and f_{sPO}) for both PU and PU-CF samples. I(t) and $I_i(t)$ are obtained by the inverse Fourier transform (Eq. S1) of the overall r.t. complex permittivity, $\varepsilon^*(\omega)$, (see Eq. 3 in the main text) and of each of its terms corresponding to the detected electric events, respectively.

^{*}Corresponding author: Prof. H. Ohno, Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan. E-mail: ohnoh@cc.tuat.ac.jp; Tel: +81-42-388-7024; Fax; +81-42-388-7024

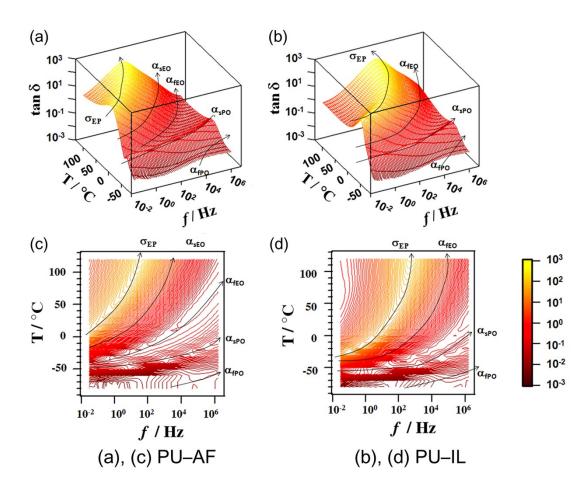
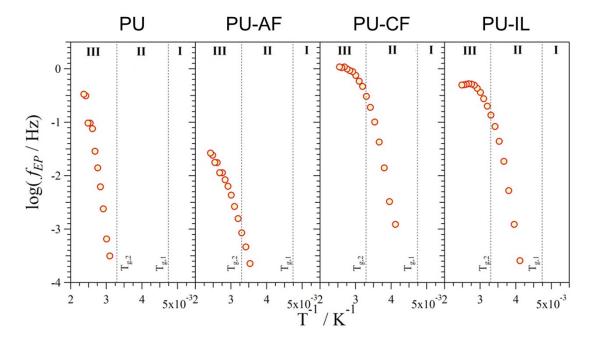



Fig. S2. $Tan\delta vs.$ temperature and frequency in 3D (a, b) and contour map (c, d).

Fig. S3. Dependence of the fitted polarization frequencies (f_{EP}) on temperature in the investigated films. f_{EP} is determined by Eq. 3. in the text.

References

1. A. Schönhals, *Acta Polymerica*, 1991, **42**, 149.