Supporting Information for

Grafting trimethylaluminum and its halogen derivatives on silica: General trends for ²⁷Al SS-NMR response from first principles calculations

Rachel Nathaniel Kerber,[#] Torsten Kerber,[^] Xavier Rozanska,^a Françoise Delbecq, and Philippe Sautet*

Université de Lyon, CNRS, Institut de Chimie de Lyon, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon Cedex 07, France.

[#] Present address: University of Cambridge, Department of Chemistry, Lensfield Road,

Cambridge, CB2 1EW, United Kingdom.

^ Present address: think-cell Software, Chausseestr. 8E, 10115 Berlin, Germany.

▲Present address: Materials Design, 18 rue de Saisset, F-92120 Montrouge, France.

*Corresponding author: Philippe.Sautet@ens-lyon.fr

Contents

²⁷ AL SS-NMR FOR MONOMERIC SPECIES IN GAS-PHASE AND GRAFTED ON SILICA	2
²⁷ AL SS-NMR FOR DIMERIC SPECIES	4
DIMERIC SPECIES IN GAS PHASE	4
DIMERIC SPECIES GRAFTED ON SILICA	8
Monografted dimers	8
Bigrafted dimers	12

²⁷Al SS-NMR for monomeric species in gas-phase and grafted on silica

Monomers in gas-phase and grafted						
Species	δ _{ISO} (ppm)	C _Q (MHz)				
Ga	is-phase					
AIF ₃	57	36				
AICI ₃	149	29				
Al(OH)₃	96	33				
AI(OH) ₂ CI	110	32				
AI(OH)Cl ₂	129	30				
Al(OH)₂Me	143	36				
Al(OH)Me ₂	221	41				
Al(OH)MeCl	165	35				
Al(OMe) ₃	70	32				
Al(Me) ₃	321	47				
AlMe ₂ Cl	261	40				
AlMeCl ₂	197	34				
Clust	ter models					
Al(OSi(OH) ₃) ₃	52	36				
AlMe(OSi(OH) ₃) ₂	123	38				
AlMe ₂ (OSi(OH) ₃)	214	42				
AlMeCl(OSi(OH) ₃)	151	36				
Surfa	ice models					
O _{SURF} AIMe ₂	228	43				
(O _{SURF}) ₂ AIMe ₂	174	34				
O _{SURF} AIMeCI	165	37				
(O _{SURF}) ₂ AIMeCl	127	25				
O _{SURF} AICI ₂	122	32				
(O _{SURF}) ₂ AICI ₂	95	18				
(O _{SURF}) ₂ AIMe	134	37				
(O _{SURF}) ₂ AICI	103	33				

²⁷Al SS-NMR for monomeric species in gas-phase and grafted on silica

Table S1. DFT-calculated 27 Al NMR parameters δ_{ISO} (ppm) and C_Q (MHz) for all monomeric species presented in Figure 1.

Scheme S1. Schematic representation of all models of Al monomers used in the 2D map: AlMe₃, AlMe₂Cl, AlMeCl₂, AlMe₂OH, AlCl₂OH, AlMe(OH)₂, AlCl(OH)₂, AlMeClOH, Al(OH)₃, Al(OMe)₃, AlF₃, Al(OSi(OH)₃)₃, AlMe(OSi(OH)₃)₂, AlMe₂(OSi(OH)₃), AlMeCl(OSi(OH)₃), -O_{SURF}AlMe₂, -O_{SURF} AlMeCl, -O_{SURF} AlCl₂, -O_{SURF}AlMe₂ O_{SURF}, -O_{SURF}AlMeCl O_{SURF}, -O_{SURF}AlCl₂ O_{SURF}, (O_{SURF})₂-AlMe, (O_{SURF})₂-AlCl.

²⁷Al SS-NMR for dimeric species

70 μ^2 -Me μ-MeCl **XX** 202 **XX**002 μ²-Cl 60 ₩102 8101c 8101t 50 Relative Energy (kJ·mol⁻¹) **(**112 **(**012 40 **Q**212 Φ011 111c 111t H 30 20 **₩**001 **求**022 10 **非**121c 121t 0 ₩000 Φ010 **1**020 **立**021 **122 1**2222 -10 0 1 2 3 4 5 6 Number of Cl

Dimeric species in gas phase

Figure S1 Relative energy as a function of the number of Cl for the dimers in gas phase with general formula $Me_nCl_{2-n}All(\mu^2-Me_nCl_{1-n})Al2Me_nCl_{2-n}$. The small c and t, stand for cis and trans isomers, respectively. The crossed diamond represents Me in bridge position, the circle corresponds to mixed MeCl bridge, and the star shows that in bridge we have Cl. The position of the Cl atoms is indicated as in the main text of the paper.

Spagios	Relative energies of gas-phase dimers							
species	Classition		Num	ber o	f Cl a	toms		
	CI position	0	1	2	3	4	5	6
$Me2Al1(\mu^2-Me)Al2Me_2$	000	-	-	-	-	-	-	
Me ₂ Al1(µ-MeCl)Al2Me ₂	010	-	0	-	-	-	-	
$Me_2Al1(\mu^2-Me)Al2MeCl$	001	-	18	-	-	-	-	
Me2Al1(μ^2 -Cl)Al2Me ₂	020	-	-	0	-	-	-	
Me2Al1(µ-MeCl)Al2MeCl	011	-	-	36	-	-	-	
MeClAl1(µ ² -Me)Al2MeCl	101t	-	-	52	-	-	-	
MeClAl1(µ ² -Me)Al2MeCl	101c	-	-	55	-	-	-	
Me2Al1(μ^2 -Me)Al2Cl ₂	002	-	-	61	-	-	-	
Me2Al1(μ^2 -Cl)Al2MeCl	021	-	-	-	0	-	-	
MeClAl1(µ-MeCl)Al2MeCl	111t	-	-	-	33	-	-	
MeClAl1(µ-MeCl)Al2MeCl	111c	-	-	-	35	-	-	
$Me_2Al1(\mu-MeCl)Al2Cl_2$	012	-	-	-	43	-	-	
$MeClAll(\mu^2-Me)Al2Cl_2$	102	-	-	-	57	-	-	
MeClAl1(µ ² -Cl)Al2MeCl	121t	-	-	-	-	0	-	
MeClAl1(µ ² -Cl)Al2MeCl	121c	-	-	-	-	2	-	
$Me_2Al1(\mu^2-Cl)Al2Cl_2$	022	-	-	-	-	11	-	
MeClAl1(µ-MeCl)Al2Cl ₂	112	-	-	-	-	43	-	
$Cl_2Al1(\mu^2-Me)Al2Cl_2$	202	-	-	-	-	63	-	
$\overline{MeClAll(\mu^2-Cl)Al2Cl_2}$	122	-	-	-	-	-	0	
Cl ₂ Al1(µ-MeCl)Al2Cl ₂	212						38	
$Cl_2Al1(\mu^2-Cl)Al2Cl_2$	222	-	-	-	-	-	-	-

Table S2. Relative energy differences for the bigrafted dimers in gas phase as a function of the number of Cl with general formula $Me_nCl_{2-n}A11-(\mu^2-Me_nCl_{1-n})A12Me_nCl_{2-n}$.

		Gas-phase dimers			
Species	Cl positions	Al	δ _{1SO} (ppm)	C _Q (MHz)	
$M_{2} \Lambda 11(u^{2} M_{2})\Lambda 12M_{2}$	000	Al1	152	25	
$Me_2AII(\mu - Me)AI2Me_2$	000	Al2	152	25	
$Me2\Delta 11(\mu 2_Me)\Delta 12MeC1$	0'01	Al1	153	28	
	00'1	Al2	134	18	
Me2A11(u2-Me)A12C12	0'02	Al1	155	31	
Wie2/ Wi(µ2/Wie)/ Wi2012	00'2	Al2	117	5	
MeClAl1(u2-Me)Al2MeCl c	101c	Al1	131	19	
	1010	Al2	131	19	
MeClAl1(u2-Me)Al2MeCl t	101 [*] t	Al1	130	20	
		Al2	130	20	
MeClAl1(u2-Me)Al2Cl2	1'02	All	128	20	
	10'2	Al2	112	7	
Cl2Al1(u2-Me)Al2Cl2	202	All	107	9	
	-	Al2	107	9	
Me2Al1(u-MeCl)Al2Me2	010	All	161	30	
	0111	Al2	161	30	
Me2Al1(u-MeCl)Al2MeCl	0'11	All	165	34	
	011	Al2	133	21	
Me2Al1(µ-MeCl)Al2Cl2	0.12	All	169	36	
	01 2	A12	110	11	
MeClAl1(µ-MeCl)Al2MeCl c	111c	All	130	22	
		A12	130	22	
MeClAl1(µ-MeCl)Al2MeCl t	111t	All	132	23	
	1,10	A12	132	23	
MeClAl1(µ-MeCl)Al2Cl2	1 12	A11 A12	120	24 12	
	11 2	A12	107	12	
Cl2Al1(µ-MeCl)Al2Cl2	212	A11	103	12	
		A12	103	36	
$Me_2AII(\mu^2-CI)AI2Me_2$	020*	A12	180	36	
	0'21	A12	183	38	
$Me_2AII(\mu^2-CI)AI2MeCI$	021	A12	137	24	
$M_{2} = A_{11} (x^{2} - C_{1}) A_{12} C_{1}$	0'22	A11	183	39	
$Me_2AII(\mu - CI)AI2CI_2$	02'2	Al2	104	13	
$M_{2}C_{1}A_{1}1(\omega^{2}C_{1})A_{1}2M_{2}C_{1}a$	022	All	136	25	
MeCIAII (μ -CI)AI2MeCI C	121c	A12	136	25 25	
$M_{2}C[A][1(u^{2} C])A][2M_{2}C]$		All	137	25	
νιευιατι(μ -υι)αι2νιευτ	121t	A12	137	25	
$M_{eC}[\Lambda]1(\mu^2 C)[\Lambda]2C]$	1'22	A11	136	26	
$WICCIAII(\mu - CI)AI2CI_2$	12'2	Al2	103	14	
$C_{1} = A_{11} (u^{2}, C_{1}) = A_{12} C_{1}$	222	Alī	101	16	
$Cl_2AI1(\mu^Cl)AI2Cl_2$	222	A12	101	16	

Table S3. DFT-calculated ²⁷Al NMR parameters δ_{ISO} (ppm) and C_Q (MHz) for all dimeric species in gas-phase presented in Figure 2. Small c and t are indicating the cis and trans position of the substituent. Labels x'yz and xy'z indicate the position of the considered Al

(All(left) and Al2(right). In bold are the two dimer references used for the EFG calculations in terms of NBOs and NLMOs.

Scheme S2. Representation of the two dimers with methyl and oxygen substituents used for the decomposition on localized molecular orbitals.

NLMO contributions	#	020	#	101
BD σ(Al-C)	2	-0.355	1	-0.473
BD σ(Al-O)	2	0.151	1	-0.103
$\Sigma \sigma(Al-X)$		-0.408		-0.576
BD σ (C-H)	2	-0.040		-0.109
$3C(Al_1-Al_2-C)$		-	2	0.116
Al core		-0.396		-0.313
C core	2	-0.056	1	-0.072
O core	2	0.040		-
Σ Analysis [#]		-0.916		-0.838
Total calculated $\equiv V_{33} $		0.773		0.552
N	NBO ch	arges		
Al		1.829		1.709
Cl		-1.318		-1.314
C_t		-1.268		-1.267
Cbr		-		-1.240

Table S4 NLMO analysis of aluminum V_{33} (in au) principal component for Me₂Al1(μ^2 -OSiH₃)Al2Me₂ and Me(OSiH₃)Al1(μ^2 -Me)Al2Me(OSiH₃) dimers in gas phase. Here are presented the following labels: 2-center bond (BD), 3-center bond (3C), and 1-center core pair (CR). "Total calculated" is the actual $|V_{33}|$. Σ Analysis corresponds to the sums of all terms shown here from NLMO analysis with >5% contribution.

Dimeric species grafted on silica

Monografted dimers

		Relative energies of					
Species			mon	ograft	ed din	iers	
Species	Type / Cl		Num	ber of	f Cl ato	oms	
	position	0	1	2	3	4	5
Me ₂ Al1(µ-MeO _{SURF})Al2Me ₂	2.1 / 000	0	-	-	-	-	-
O_{SURF} MeAl1(μ^2 -Me)Al2Me ₂	2.2 / 000	27	-	-	-	-	-
Me ₂ Al1(µ-ClO _{SURF})Al2Me ₂	2.1 / 010	-	0	-	-	-	-
Me ₂ Al1(µ-MeO _{SURF})Al2MeCl	2.1 / 001	-	35	-	-	-	-
O _{SURF} MeAl1(µ-MeCl)Al2Cl ₂	2.2 / 010	-	49	-	-	-	-
$O_{SURF}ClAl1(\mu^2-Me)Al2Cl_2$	2.2 / 100	-	60	-	-	-	-
O _{SURF} MeAl1(µ ² -Me)Al2MeCl	2.2 / 001	-	75	-	-	-	-
Me ₂ Al1(µ-ClO _{SURF})Al2MeCl	2.1 / 011	-	-	0	-	-	-
MeClAl1(µ-MeO _{SURF})Al2MeCl trans	2.1 / 101t	-	-	8	-	-	-
O_{SURF} MeAl1(μ^2 -Cl)Al2Me ₂	2.2 / 020	-	-	14	-	-	-
$Me_2Al1(\mu-MeO_{SURF})Al2Cl_2$	2.1 / 002	-	-	19	-	-	-
MeClAl1(µ-MeO _{SURF})Al2MeCl cis	2.1 / 101c	-	-	29	-	-	-
O _{SURF} ClAl1(µ-MeCl)Al2Me ₂	2.2 / 110	-	-	48	-	-	-
O _{SURF} MeAl1(µ-MeCl)Al2MeCl	2.2 / 011	-	-	58	-	-	-
$O_{SURF}ClAll(\mu^2-Me)Al2MeCl cis$	2.2 / 101c	-	-	69	-	-	-
O_{SURF} MeAl1(μ^2 -Me)Al2Cl ₂	2.2 / 002	-	-	78	-	-	-
O_{SURF} ClAl1(μ^2 -Me)Al2MeCl trans	2.2 / 101t	-	-	80	-	-	-
MeClAl1(µ-ClO _{SURF})Al2MeCl trans	2.1 / 111t	-	-	-	0	-	-
$Me_2Al1(\mu$ - $ClO_{SURF})Al2Cl_2$	2.1 / 012	-	-	-	14	-	-
MeClAl1(µ-ClO _{SURF})Al2MeCl cis	2.1 / 111c	-	-	-	20	-	-
$O_{SURF}ClAl1(\mu^2-Cl)Al2Me_2$	2.2 / 120	-	-	-	38	-	-
O _{SURF} MeAl1(µ ² -Cl)Al2MeCl	2.2 / 021	-	-	-	48	-	-
MeClAl1(µ-MeO _{SURF})Al2Cl ₂	2.1 / 102	-	-	-	57	-	-
O _{SURF} ClAl1(µ-MeCl)Al2MeCl cis	2.2 / 111c	-	-	-	82	-	-
O _{SURF} MeAl1(µ-MeCl)Al2Cl ₂	2.2 / 012	-	-	-	89	-	-
O _{SURF} ClAl1(µ-MeCl)Al2MeCl trans	2.2 / 111t	-	-	-	90	-	-
$O_{SURF}ClAl1(\mu^2-Me)Al2Cl_2$	2.2 / 102	-	-	-	109	-	-
$MeClAl1(\mu-ClO_{SURF})Al2Cl_2$	2.1 / 112	-	-	-	-	0	-
$O_{SURF}ClAl1(\mu^2-Cl)Al2MeCl cis$	2.2 / 121c	-	-	-	-	25	-
O _{SURF} MeAl1(µ2-Cl)Al2Cl ₂	2.2 / 022	-	-	-	-	31	-
O _{SURF} ClAl1(µ2-Cl)Al2MeCl trans	2.2 / 121t	-	-	-	-	32	-
$Cl_2Al1(\mu-MeO_{SURF})Al2Cl_2$	2.1 / 202	-	-	-	-	34	-
O _{SURF} ClAl1(µ-MeCl)Al2Cl ₂	2.2 / 112	-	-	-	-	73	-
$Cl_2Al1(\mu-ClO_{SURF})Al2Cl_2$	2.1 / 212	-	-	-	-	-	0
$O_{SURF}ClA11(\mu^2-Cl)A12Cl_2$	2.2 / 122	-	-	-	-	-	37

Table S4. Relative energy differences for the monografted dimers- grafted via terminal (GvT) and grafted via bridge (GvB) as a function of the number of Cl with general formula $O_{SURF}Me_nCl_{1-n}Al1-(\mu^2-Me_nCl_{1-n})Al2Me_nCl_{2-n}$ and $Me_nCl_{2-n}Al1(\mu-Me_nCl_{1-n}O_{SURF})Al2Me_nCl_{2-n}$, respectively.

	GvB					
Species	Cl position	Al	δ _{ιso} (ppm)	C _Q (MHz)		
Ma All(MaQ)Al2Ma	000	Al1	157	25		
$Me_2AII(\mu-MeO_{SURF})AI2Me_2$	000	Al2	157	25		
$M_{2} \wedge 11(\mu M_{2} \Omega) \rightarrow 12M_{2} \Omega$	001	Al1	159	27		
$Me_2AII(\mu-MeO_{SURF})AI2MeCI$	001	Al2	128	19		
M_{2} , $A_{11}(u, M_{2}O_{2}) = -) A_{12}O_{1}$	Mo: 411(11 MoOrman) 412Ch 002 A		169	33		
Me2AII (µ-MeOSURF)AI2CI2	002	Al2	106	7		
$M_{2}C[\Lambda]1(\mu, M_{2}O_{2}, \mu_{2})\Lambda[2M_{2}C]$	1010		126	20		
MeCIAII(µ-MeOSURF)AI2MeCI C	1010	Al2	126	20		
$MeC1\Lambda 11(u_MeO_{aver})\Lambda 12MeC1 t$	101t	Al1	127	21		
WICCIAII (µ-WICOSURF) AIZWICCI t	1011	Al2	127	21		
MeClAl1(µ-MeO _{SURF})Al2Cl ₂	102	Al1	126	20		
		Al2	100	9		
Cl_All(u-MeO _{SURE})Al2Cl_	202	Al1	99	11		
	202	Al2	99	11		
$Me_2A11(\mu-ClO_{SUDE})A12Me_2$	010	Al1	171	30		
$(\mu \circ i \circ s_{0,KF}) = 12 i i \circ s_{0,KF}$	010	Al2	171	30		
Me ₂ Al1(u-ClO _{SUPE})Al2MeCl	011	Al1	172	31		
	011	Al2	130	22		
$Me_2All(\mu-ClO_{SURE})Al2Cl_2$	012	All	177	35		
	012	Al2	97	11		
MeClAl1(u-ClO _{SURE})Al2MeCl c	111c	All	130	22		
(r		Al2	130	22		
MeClAl1(u-ClO _{SURE})Al2MeCl t	111t	All	130	23		
(r - 50kr)		Al2	130	23		
MeClAl1(u-ClO _{SURE})Al2Cl ₂	112	All	129	22		
		AI2	97	13		
$Cl_2Al1(\mu$ - $ClO_{SURF})Al2Cl_2$	212	All	97	14		
$C121 MI (\mu - C1 O SURF) A12 C12$		AI2	97	14		

Table S5. DFT-calculated ²⁷Al NMR parameters δ_{ISO} (ppm) and C_Q (MHz) for all GvB species (Me_nCl_{2-n}Al1(μ -Me_nCl_{1-n}O_{SURF})Al2Me_nCl_{2-n}) in Figure 5 of the manuscript. Small c and t are indicating the cis and trans position of the substituent, respectively.

Figure S2. All methylaluminum monografted dimers via terminal (GvT) position are presented in two 2D plots, one for each Al (**a** for Al1 and **b** for Al2 environments), respectively together with their chloro derivatives grafted on the {001} silica surface.

	GvT					
Species	Cl position	Al	δ _{1SO} (ppm)	C _Q (MHz)		
O _{SURF} MeAl1(µ ² -Me)Al2Me ₂	000	Al1	113	16 27		
O_{SURF} MeAl1(μ^2 -Me)Al2MeCl	001	All All	108	18		
$O_{SURF}ClAl1(\mu^2-Me)Al2Me_2$	100	Al2 Al1	130 95	18 8		
$O_{SURF}MeA11(\mu^2-Me)A12C1_2$	002	Al2 Al1	156 105	30 21		
$O_{SUBE}C[A]1(u^2-Me)A]2MeC]$	101c	Al2 Al1	110 90	7 9		
$O_{\text{SURF}} = C[A]1(\mu^2 \text{ Me})A[2MeC]$	1016	Al2 Al1	127 89	22 10		
$O_{SURF}CIAII(\mu - Me)Al2MeCI$	1010	Al2 Al1	127 84	20 11		
$O_{SURF}CIAII(\mu^2-Me)AI2CI_2$	102	Al2	105	10		
$O_{SURF}MeAl1(\mu-MeCl)Al2Me_2$	010	All	110	20		
O _{SURF} MeAl1(µ-MeCl)Al2MeCl	011	Al2 Al1	164 109	33 23		
O _{SURF} ClAl1(µ-MeCl)Al2Me ₂	110	Al2 Al1	130 88	21 13		
O _{SURF} MeAl1(µ-MeCl)Al2Cl ₂	012	Al2 Al1	169 106	36 25		
OsureClAll(u-MeCl)Al2MeCl	111c	Al2 Al1	104 85	12 13		
$O_{SUBT}C1\Delta 11(\mu-MeC1)\Delta 12MeC1$	111t	Al2	129	25		
$O_{\text{SURF}} = O_{\text{SURF}} = $	112	Al2	129	23		
$O_{SURF}CIAII(\mu-MeCI)AI2CI_2$	112	All Al2	82 100	15		
$O_{SURF}MeAl1(\mu^2-Cl)Al2Me_2$	020	Al1 Al2	110 182	25 38		
$O_{SURF}MeAl1(\mu^2-Cl)Al2MeCl$	021	Al1 Al2	109 136	28 26		
O _{SURF} ClAl1(µ ² -Cl)Al2Me ₂	120	All	81	16		
$O_{SURF}MeAl1(\mu^2-Cl)Al2Cl_2$	022	All	108	40 29		
$O_{\text{SUBE}}C[A]1(u^2-C])A[2MeC]$	121c	Al2 Al1	103 80	15 17		
	1210	Al2	136	28		
O _{SURF} ClAl1(µ ² -Cl)Al2MeCl	121t	All	81 136	27		
$O_{SURF}ClAl1(\mu^2-Cl)Al2Cl_2$	122	Al1 Al2	79 102	19 16		

Table S6. DFT-calculated ²⁷Al NMR parameters δ_{ISO} (ppm) and C_Q (MHz) for all GvT species ($O_{SURF}Me_nCl_{1-n}Al1-(\mu^2-Me_nCl_{1-n})Al2Me_nCl_{2-n}$) shown in Figure S2. Small c and t are indicating the cis and trans position of the substituent, respectively.

Bigrafted dimers

²⁷Al SS-NMR for bigrafted dimeric species on silica

		Relative energies of				
Species	Type / Cl	Number of Cl ator			atom	IS
	position	0	1	2	3	4
O _{SURF} MeAl1(µ-MeO _{SURF})Al2Me ₂	2.3/000	0	-	-	-	-
$Me_2A11(\mu^2-O_{SURF})A12Me_2$	2.4 / 000	26	-	-	-	-
O_{SURF} MeAl1(μ^2 -Me)Al2MeO _{SURF}	2.5 / 000	31	-	-	-	-
$(O_{SURF})_2Al1(\mu^2-Me)Al2Me_2$	2.6 / 000	57	-	-	-	-
O _{SURF} Me ₂ Al1(µ-ClO _{SURF})Al2Me ₂	2.3 / 010	-	0	-	-	-
O _{SURF} Me ₂ Al1(µ-MeO _{SURF})Al2MeCl	2.3 / 001	-	33	-	-	-
O _{SURF} ClAl1(µ-MeO _{SURF})Al2Me ₂	2.3 / 100	-	38	-	-	-
O _{SURF} MeAl1(µ-MeCl)Al2MeO _{SURF}	2.5 / 010	-	52	-	-	-
MeClAl1(μ^2 -O _{SURF})Al2Me ₂	2.4 / 100	-	64	-	-	-
O _{SURF} ClAl1(µ ² -Me)Al2MeO _{SURF}	2.5 / 100	-	73	-	-	-
(O _{SURF}) ₂ Al1(µ-MeCl)Al2Me ₂	2.6 / 010	-	82	-	-	-
$(O_{SURF})_2A11(\mu^2-Me)A12MeC1$	2.6 / 001	-	94	-	-	-
O _{SURF} MeAl1(µ-ClO _{SURF})Al2MeCl	2.3 / 011	-	-	0	-	-
O _{SURF} ClAl1(µ-ClO _{SURF})Al2Me ₂	2.3 / 110	-	-	11	-	-
O _{SURF} MeAl1(μ^2 -Cl)Al2MeO _{SURF}	2.5 / 020	-	-	24	-	-
O _{SURF} ClAl1(µ-MeO _{SURF})Al2MeCl	2.3 / 101t	-	-	38	-	-
O _{SURF} ClAl1(µ-MeO _{SURF})Al2MeCl	2.3 / 101c	-	-	40	-	-
$O_{SURF}MeAl1(\mu-MeO_{SURF})Al2Cl_2$	2.3 / 002	-	-	42	-	-
$(O_{SURF})_2Al1(\mu^2-Cl)Al2Me_2$	2.6 / 020	-	-	54	-	-
O _{SURF} MeAl1(µ-MeCl)Al2ClO _{SURF}	2.5 / 011	-	-	63	-	-
MeClAl1(μ^2 -O _{SURF})Al2MeCl	2.4 / 101c	-	-	65	-	-
$Me_2Al1(\mu^2-O_{SURF})Al2Cl_2$	2.4 / 002	-	-	77	-	-
(O _{SURF}) ₂ Al1(µ-MeCl)Al2MeCl	2.6 / 011	-	-	85	-	-
$O_{SURF}ClAl1(\mu^2-Me)Al2ClO_{SURF}$	2.5 / 101	-	-	88	-	-
$(O_{SURF})_2$ Al1(μ^2 -Me)Al2Cl	2.6 / 002	-	-	102	-	-
O _{SURF} ClAl1(µ-ClO _{SURF})Al2MeCl	2.3 / 111t	-	-	-	0	-
O _{SURF} ClAl1(µ-ClO _{SURF})Al2MeCl	2.3 / 111c	-	-	-	0	-
$O_{SURF}MeAl1(\mu-ClO_{SURF})Al2Cl_2$	2.3 / 012	-	-	-	4	-
$O_{SURF}ClAl1(\mu^2-Cl)Al2MeO_{SURF}$	2.5 / 120	-	-	-	23	-
$O_{SURF}ClAl1(\mu-MeO_{SURF})Al2Cl_2$	2.3 / 102	-	-	-	33	-
$(O_{SURF})_2Al1(\mu^2-Cl)Al2MeCl$	2.6 / 021	-	-	-	45	-
O _{SURF} ClAl1(µ-MeCl)Al2ClO _{SURF}	2.5 / 111	-	-	-	64	-
$MeClAl1(\mu^2-O_{SURF})Al2Cl_2$	2.4 / 102	-	-	-	66	-
$(O_{SURF})_2Al1(\mu-MeCl)Al2Cl_2$	2.6 / 012	-	-	-	80	-
$O_{SURF}ClAl1(\mu-ClO_{SURF})Al2Cl_2$	2.3 / 112	-	-	-	-	0
$O_{SURF}ClAl1(\mu^2-Cl)Al2ClO_{SURF}$	2.5 / 121	-	-	-	-	30
$(O_{SURF})_2$ All $(\mu^2$ -Cl)Al2Cl ₂	2.6 / 022	-	-	-	-	51
$Cl_2Al1(\mu^2-O_{SURF})Al2Cl_2$	2.4 / 202	-	-	-	-	69

Table S7. Relative energy differences for the bigrafted dimers- 2.3 ($O_{SURF}Me_nCl_{1-n}Al1(\mu-Me_nCl_{1-n}O_{SURF})Al2Me_nCl_{2-n}$), 2.4 ($Me_nCl_{2-n}Al1(\mu^2-O_{SURF})Al2Me_nCl_{2-n}$), 2.5 ($O_{SURF}Me_nCl_{1-n}Al1(\mu-Me_nCl_{2-n})Al2Me_nCl_{1-n}Al1(\mu-Me_nCl_{2-n})Al2Me_nCl_{2-n}$).

Figure S3. All methylaluminum bigrafted dimers and their chloro derivatives in which the Al-Al axis is parallel to the {001} silica surface.

For the 2.4 dimers (Me_nCl_{2-n}Al1(μ^2 -O_{SURF}) Me_nCl_{2-n}) we see clearly the effect of the number of the Cl atoms. Starting from Me₂Al1(μ^2 -O_{SURF}) Me₂ (where Al1 and Al2 are equivalent) we start from 167 ppm and 28 MHz, to 130 ppm and 21 MHz for the MeClAl1(μ^2 -O_{SURF}) MeCl, and ending with 99 ppm and 15 MHz for the Cl₂Al1(μ^2 -O_{SURF}) Cl₂. Along that linear correlation the δ_{ISO} and the C_Q both shift towards the small values with 68 ppm and 13 MHz respectively. This is exactly what we would expect based on the already observed trend for the monografted dimers.

Figure S4. All methylaluminum bigrafted dimers and their chloro derivatives in which the Al-Al axis is parallel to the {001} silica surface.

Figure S5. All methylaluminum bigrafted dimers and their chloro derivatives in which the Al-Al axis is perpendicular to the {001} silica surface.

	BG dimers				
Species	Cl position	Al	δ _{ISO} (ppm)	Cջ (MHz)	
			2.3		
$O_{SURF}MeAl1(\mu-O_{SURF}Me)Al2Me_2$	000	All	116	19	
		Al2	162	29	
O _{SURF} MeAl1(µ-O _{SURF} Me)Al2MeCl	001	All	114	20	
		Al2	128	20	
$O_{SURF}ClAl1(\mu - O_{SURF}Me)Al2Me_2$	100	All	92	13	
		Al2	170	33	
$O_{SURF}MeAl1(\mu - O_{SURF}Me)Al2Cl_2$	002	All	112	22	
		Al2	100	9	
$O_{SURF}ClAll(\mu-O_{SURF}Me)Al2MeCl c$	101c	Al1	88	13	
		Al2	127	23	
$O_{\text{supp}}C1A11(u=O_{\text{supp}}Me)A12MeC1t$	101t	Al1	89	13	
		Al2	129	22	
$O_{\text{supp}}C[\Delta][(\mu - O_{\text{supp}}Me)\Delta][2C]_{2}$	102	Al1	86	14	
$O_{SURFCHAIL}(\mu - O_{SURFINE})/ HZC12$		Al2	98	12	
$O_{SURF}MeAl1(\mu-O_{SURF}Cl)Al2Me_2$	010	All	111	22	
		Al2	175	33	
O _{SURF} MeAl1(µ-O _{SURF} Cl)Al2MeCl	011	Al1	111	24	
		Al2	132	23	
O _{SURF} ClAl1(µ-O _{SURF} Cl)Al2Me ₂	110	Al1	82	14	
		Al2	180	35	
O _{SURF} MeAl1(µ-O _{SURF} Cl)Al2Cl ₂	012	Al1	111	26	
		Al2	99	14	
O _{SURF} ClAl1(µ-O _{SURF} Cl)Al2MeCl c	111c	Al1	82	15	
		Al2	132	25	
$O_{\text{sum}} = C1 \wedge 11 (\mu O_{\text{sum}} = C1) \wedge 12 \text{MeC1} t$	111t	Al1	82	15	
OSURFCIAII(µ-OSURFCI)AIZIVICCI t		Al2	133	24	
$O_{\text{res}} = C[A]1(\mu, O_{\text{res}} = C])A]2C[\mu, \mu]$	112	Al1	81	16	
OSURFCIAII(µ-OSURFCI)AIZCI2		Al2	98	16	
			2.4		
$Me_2A11(\mu^2-O_{SURE})A12Me_2$	000	Al1	167	28	
		Al2	167	28	
$Me_2A11(\mu^2-O_{SURE})A12MeC1$	001	Al1	169	30	
		Al2	128	21	
$Me_2Al1(\mu^2-O_{SURE})Al2Cl_2$	002	Al1	173	32	
		Al2	98	13	
$MeClAll(\mu^2-O_{SURE})Al2MeCl$	101	Al1	130	21	
		Al2	130	21	
$MeC A 1(\mu^2 - O_{SUDE})A 2C _2$	102	All	131	22	
		Al2	98	14	
$C_{12}A_{11}(\mu^2 - O_{SUBE})A_{12}C_{12}$	202	All	99	15	
		Al2	99	15	
			2.5		
O_{SURF} MeAl1(μ^2 -Me)Al2MeO _{SURF}	000	All	106	22	
		Al2	106	22	

O_{SURF} MeAl1(μ^2 -Me)Al2ClO _{SURF}	001	Al1	102	24		
		Al2	86	10		
O _{SURF} ClAl1(µ ² -Me)Al2ClO _{SURF}	101	Al1	79	12		
		Al2	79	12		
O _{SURF} MeAl1(µ-MeCl)Al2MeO _{SURF}	010	Al1	102	26		
		Al2	102	26		
O _{SURF} MeAl1(µ-MeCl)Al2ClO _{SURF}	011	Al1	99	27		
		Al2	78	15		
O _{SURF} ClAl1(µ-MeCl)Al2ClO _{SURF}	111	Al1	73	17		
		Al2	73	17		
$O_{\text{SUPE}}MeA11(\mu^2-Cl)A12MeO_{\text{SUPE}}$	020	Al1	103	30		
		Al2	103	30		
$O_{SURF}MeAl1(\mu^2-Cl)Al2ClO_{SURF}$	021	Al1	74	19		
		Al2	100	31		
$O_{SURF}ClAl1(\mu^2-Cl)Al2ClO_{SURF}$	121	Al1	72	21		
		Al2	72	21		
		2.6				
$(O_{SURF})_2$ Al1 $(\mu^2$ -Me)Al2Me ₂	000	Al1	78	11		
		Al2	156	28		
$(O_{SURF})_2Al1(\mu^2-Me)Al2MeCl$	001	Al1	75	13		
		Al2	133	20		
$(O_{SURF})_2 Al1(\mu^2 - Me) Al2Cl_2$	002	Al1	71	15		
		Al2	111	8		
(O _{SURF}) ₂ Al1(µ-MeCl)Al2Me ₂	010	Al1	71	15		
		Al2	171	34		
(O _{SURF}) ₂ Al1(μ-MeCl)Al2MeCl	011	Al1	69	16		
		Al2	136	23		
$(O_{SURF})_2Al1(\mu-MeCl)Al2Cl_2$	012	Al1	67	16		
		Al2	107	12		
$(O_{SURF})_2$ Al1 $(\mu^2$ -Cl)Al2Me ₂	020	Al1	70	16		
		A12	183	39		
$(O_{SURF})_2$ Al1(μ^2 -Cl)Al2MeCl	021	All	69	17		
		Al2	137	27		
$(O_{SURF})_2 \overline{Al1(\mu^2 - Cl)Al2Cl_2}$	121	All	68	18		
		Al2	103	16		

Table S6. DFT-calculated ²⁷Al NMR parameters δ_{ISO} (ppm) and C_Q (MHz) for all bigrafted dimeric species on silica surface some of which presented in Figure 5, S2-S5.