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                          (M=Al, Cr, Fe, Ce)

Figure S1 The cluster models and structural schematic diagram for ZnM–LDHs (A) 

and Ti/ZnO–MxOy composite (B).

Cluster Model of LDHs and Composite

According to the references [S1], to study the structural properties of ZnM–LDHs, 

the formulation of [Zn3M(OH)8]+ was used as the cluster model. The periodical model 

of Zn6M2(OH)16(NO3
–)2 was established in hexagonal (2H) stacking sequence, 

containing Zn3M(OH)8
+ as host layer and NO3

 as guest anion, that was the host–

guest interaction model with NO3
 in the position of hcp–M. And the host–guest 

calculation model of ZnM–LDHs was shown in Scheme 2A. Moreover, for the 

purpose of reflecting the objective composition of Ti/ZnO–MxOy composite best, we 

make some optimization for the calculation parameter and models. The designated 

mole ratios of MxOy and TiO2 were used to replace the adjacent ZnO (see Scheme 2B).

Computational Model: Geometry optimization and property analysis were 

performed in the framework of density functional theory (DFT), using the LDA–CA–

PZ and Ultrasoft   Psedupotential [S2] for atom and electron calculation, energy 

ZnCr–LDHs(A)
(A)  ZnM–LDHs

Ti/ZnO–MxOy composite(B)



quality is set as medium, energy cutoff is 340.0 eV, SCF tolerance is fixed at 2×10−6 

eV·atom−1, and k–point set of Brillouin zone is 4×4×1. Pulay Mixing Scheme is used 

for the calculation of ground state energy, and the electronic configuration of Zn2+, 

M3+, Ti4+ is calculated in the high–spin state. Total charge of every model is set as 0. 

All the above–mentioned parameters were tested and found to be enough to ensure the 

energy and stress well converged. The calculations have been completed with the 

CASTEP code of the software Materials Studio 5.5. 

(S1) Yan, H., Lu, J., Wei, M., Ma, J., Li, H., He, J., Evans, D. G., Duan, X. 

Theoretical Study of the Hexahydrated Metal Cations for the Understanding of 

Their Template Effects in the Construction of Layered Double Hydroxides. J. 

Mol. Struc–Theochem. 2008, 866, 34–45.

(S2) Yan, H., Wei, M., Ma, J., Li, F., Evans, D. G., Duan, X. Theoretical Study on the 

Structural Properties and Relative Stability of M(II)−Al Layered Double 

Hydroxides Based on a Cluster Model. J. Phys. Chem. A 2009, 113, 6133–6141.
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Figure S2 The electronic density of states of all elements for Ti/ZnO–MxOy 

composite (M=Al, Cr, Fe, Ce).
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Figure S3 The comparison of HCB decomposition between original Ti/ZnO–Cr2O3 

composite and thermally regenerated materials from used material. Note: ZnCrTi–1, 

ZnCrTi–2, ZnCrTi–3, ZnCrTi–4 and ZnCrTi–5 are the products after the first–, 

second–, third–, fourth– and fifth–cycle thermal regenerations of Ti/ZnO–Cr2O3, 

respectively.
Regeneration of used composites

  In this work, to determine the reutilization of those Ti/ZnO–Cr2O3 composite for 

HCB removal from aqueous solutions, the materials after photo–reaction were 

regenerated using a thermal recycle method like this [S3]: after completing 

equilibrium degradation experiments described in Section 2.4, the suspension was 

filtered and washed twice both by water and ethanol for complete cleaning of the 

catalyst, then the catalyst was dried at 65 ◦C for 12 h, calcined in the tube furnace at 

500 ◦C for 5 h under N2 atmosphere and re–dispersed in HCB solution with known 

concentrations. This procedure was repeated three times and the amount of HCB after 

each dispersion–regeneration cycle was determined.

(S3) M.D. Romero, J.A. Calles, M.A. Ocana, J.M. Gomez, Epoxidation of 

cyclohexene over basic mixed oxides derived from hydrotalcite materials: Activating 

agent, solvent and catalyst reutilization, Micropor. Mesopor. Mat. 2008, 111, 243–



253.



Additional Materials Characterization

HPLC–MS and GC–MS analysis were tested by Agilent 1100 series (HPLC), 

Bruker Daltonics Esquire 3000 plus (MS) and Varian CP–3800/Sature2200 (GC/MS).
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Figure S4 The GC curves for photo–degradation process of HCB by Ti/ZnO–Cr2O3 

composite after 60 min irradiation.
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Figure S5 The HPLC curves for photo–degradation process of HCB by Ti/ZnO–

Cr2O3 composite after 180 min irradiation.
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Figure S6 Mass images of intermediates from GC–MS.
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Figure S7 Mass images of intermediates from HPLC–MS.


