Quantum dynamics of the pick up process of atoms by superfluid helium nanodroplets. The Ne + (⁴He)_N system

Arnau Vilà^a, Miguel González^{a,*} and Ricardo Mayol^{b,*}

^a Departament Química Física i IQTC, Universitat de Barcelona, c/ Martí i Franquès, 1,

08028 Barcelona, Spain.

^b Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, c/

Martí i Franquès, 1, 08028 Barcelona, Spain.

ReceivedAcceptedFirst published on the webDOI:

Supplementary Information

Table S1. Cartesian grids and propagation time steps	page 2
Table S2. Spatial separation of the Cartesian grids	page 3
Table S3. Final propagation times	page 3
Figure S1 . Maxwell velocity distribution of the Ne atom at $T = 300$ K.	page 4
Figure S2. Snapshots showing the temporal evolution of the probability	
density of the Neon atom wave packet in momentum representation	page 5

Figure S3. Trajectories of the mean values of the Ne atom velocity and	
position as a funct function of $<_{v_0}>$	page 6
Movie 1. Time evolution of the Ne atom z-axis wave packet in coordi-	
nate and momentum representations. Time evolution of the helium	
density along the z-axis and in the xz-plane (2D and 3D plots)	page 7
Movie 2 . As movie 1 but for $=500 \text{ m/s}$	page 7

Movie 3. As movie 1 but for $\langle v_0 \rangle = 800$ m/s

$< v_0 > (m/s)$	z _{Ne} min (Å)	z _{Ne} max (Å)	z max (Å)	x max (Å) ^a	∆t (ps)
90	-40.0	35.0	38.1	37.6	3.0 10-4
120	-40.0	40.0	38.1	37.6	2.5 10-4
210	-40.0	40.0	38.1	37.6	2.5 10-4
300	-40.0	40.0	38.1	37.6	2.0 10-4
500	-40.0	40.0	38.1	37.6	1.0 10-4
800	-40.0	45.0	34.8	35.6	9.0 10 ⁻⁵
1200	-40.0	40.0	34.8	35.6	9.0 10 ⁻⁵
1300	-40.0	40.0	34.8	35.6	8.0 10-5

Table S1. Cartesian grids for the Ne atom and helium and propagation time steps.

 $^{a}y \max = x \max.$

page 7

$< v_0 > (m/s)$	h _{zNe} (Å)	<i>h</i> _z (Å)	$h_{x}=h_{y}(A)$
90	0.115	0.3	0.4
120	0.114	0.3	0.4
210	0.114	0.3	0.4
300	0.114	0.3	0.4
500	0.114	0.3	0.4
800	0.089	0.2	0.4
1200	0.067	0.2	0.4
1300	0.062	0.2	0.4

Table S2. Spatial separation (h) of the Cartesian grids for the Ne atom and helium.

Table S3. Final propagation times.

$<\nu_0>(m/s)$	<i>t</i> _{final} (ps)
90	165.4
120	188.2
210	204.7
300	195.5
500	128.2
800	177.1
1200	105.5
1300	50.2

Figure S1. Maxwell velocity distribution of Ne at a temperature of 300 K. The red points indicate the velocities considered in this work.

Figure S2. Snapshots showing the temporal evolution of the probability density of the Neon atom wave packet in momentum representation, $|\tilde{\phi}_{Ne}(p_{z_{Ne}})|^2$, for $\langle v_0 \rangle = 500$ m/s and the same times considered in Figure 1.

Figure S3. Trajectories of the mean values of the Ne atom velocity and position as a function of $\langle v_0 \rangle$. The dashed line shows the z value for the pure nanodroplet surface. This is a more detailed version of Figure 4 emphasizing the "ellipses" regions.

Movie 1. Time evolution of the Ne atom z-axis wave packet (squared modulus) in coordinate (in Å; up left) and momentum (in Å⁻¹, down left) representations. Time evolution of the helium density along the z-axis (up left) and in the xz-plane as 2D (up right) and 3D (down right) plots. This is for $\langle v_0 \rangle = 210$ m/s and the simulated time is 205 ps. See the AVI video file "movie 1 pick up 210.avi" (10.9 MB).

Movie 2. As movie 1 but for $\langle v_0 \rangle = 500$ m/s and the simulated time is 128 ps. See the AVI video file "movie 2 pick up 500.avi" (11.6 MB).

Movie 3. As movie 1 but for $\langle v_0 \rangle = 800$ m/s and the simulated time is 177 ps. See the AVI video file "movie 3 pick up 800.avi" (16.3 MB).