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COMPUTATIONAL DETAILS

Electronic structure calculations

For ground state (GS) CH4 dissociative adsorption on the fixed top atom of a static dis-
torted Ni(111) surface, all ab initio energy calculations were carried out based on density
functional theory (DFT) within the framework of the VASP(Vienna ab initio simulation
packages) code [1, 2] which use a plane wave basis set for the electronic orbitals. The elec-
tronic exchange and correlation is described within the generalized gradient approximation
using the Perdew-Wang (PW91) one [3]. The interaction of the valence electrons with the
ionic cores was treated within the ultrasoft pseudopotentials (USPP) [4]. A suppercell of the
Ni(111) surface has been modeled by a four layers slab and a (2×2) unit cell with a vacuum
space between consecutive slabs corresponding to six metal atomic layers. A Monkhorst-
Pack grid [5] of 3 × 3 × 1 k-points was used. The cut-off energy employed was 380 eV. An
electronic smearing was introduced within the Methfessel-Paxton scheme [6] with N = 1
and σ=0.1 eV. Spin-polarized effect was also taken into account. The reference interaction
energy (∆V=0 eV) was referred to that configuration of the equilibrium CH4 placing 6.0
Åabove the equilibrium rigid Ni(111) slab, unless otherwise specified.

For searching out all the transition states(TSs) of CH4 interacting on a static distorted
Ni(111) surface with a fixed Q value, the nudged elastic band method (NEB) [7–9] was used
with 8 intermediate images along the reaction pathway. Such calculation was converged when
the minimum force for each image was less than 0.01 eV/Å. After this first optimization,
the structure of that image with the highest potential energy along the minimum energy
pathway (MEP) was used as an input structure for the precise determination of the TS by
minimizing all the residual forces until to the convergence criterion of 0.01 eV/Å within a
quasi-Newton method.

Neutral Network(NN)

Neutral network has been succeeded in fitting the complex PES in our group for the gas
molecular reactions and simple gas-surface interactions [10–13]. To fit a PES from a given
set of molecular configurations, we employed the feed forward NN with two hidden layers
connecting the input layer and output layer, denoted as I−J−K−1 NN. It has I nodes in the
input layer, which equals to the number of degrees of freedom or atomic distances employed
here as input coordinates for a molecular configuration, and one node in the output layer
corresponding to the potential energy value of the input configuration. The two hidden
layers have J and K neurons, respectively. The output of jth neuron in the first hidden layer
is

y1j = f 1
(
b1j +

I∑
i=1

(w1
j,i × xi)

)
, j = 1, 2, · · · , J (SI.1)

and the output of kth neuron in the second hidden layer is

y2k = f 2
(
b2k +

J∑
j=1

(w2
k,j × y1j )

)
, k = 1, 2, · · · , K (SI.2)
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and consequently the final output is given by

y = b31 +
K∑
k=1

(w3
1,k × y2k), (SI.3)

where xi(i = 1, · · · , I) are the atomic distances for a molecular configuration, the weights
wlj,i connect the ith neuron of (l− 1)th layer and the jth neuron of lth layer, and the biases blj
determine the threshold of the jth neuron of lth layer, f 1 and f 2 are transfer functions taken as
hyperbolic tangent functions. In the present study of CH4/Ni(111) system, atomic distances
as the input coordinates are the bond lengths of CH4 and those distances between each atom
of CH4 and three high symmetric surface impact sites(fcc, hcp and atop). Additional input
coordinate is considered of the degree of freedom(DOF) Q of Ni lattice. The bond lengths of
CH4 are those RCH1, RCH2, RCH3, RCH4, RH1H2, RH1H3, RH1H4, RH2H3, RH2H4, RH3H4 satisfied
the ordering of RCH1≤ RCH2≤ RCH3≤ RCH4. In total, there are twenty-six atomic distances
as the input coordinates.

Fitting procedure

As introduced the framework of the NN method , the quality of one NN fitting strongly
depends on the number of neurons for two hidden layers, i.e., the number of weights and
biases used in NN fitting. For a given set of configurations, the optimum values for the
weights and biases were updated by using the Levenberg-Marquardt non-linear least square
algorithm [14]. The root mean square error (RMSE)function is given as

RMSE =

√√√√ 1

n

n∑
i=1

wi ∗ (ENN − EDFT)2 (SI.4)

where ENN and EDFT are the energies from the evaluation of NN training and the DFT
calculations. n is the number of configurations in the database. The RMSE is used to
appraise the performance of the NN training. Moreover, we employed the ”early stopping”
method[15] to improve the fitting quality by dividing the entire data set into the training
set and the validation set, and stopping the training procedure once over fitting occurs. It
is wisdom to consider a given weighting for each term of the sum denoted by wi in Eq. 4. In
the present work, the weighting of each configuration was considered through its interaction
potential energy (i.e.,EDFT )

wi =


1.0 EDFT ≤ 3.3

0.2 EDFT ≥ 3.5

0.2 + 0.4 ∗ (1.0 + cos (EDFT−3.3)π
0.2

others

(SI.5)

According to this formula it is seen that we take all the configurations into account in the
fitting but the small distributions for those configurations with strong repulsive potentials.
Starting with a set of initial random values for the weights and biases, we perform the NN
training until the RMSE of a fitting become smaller than an acceptable value. And then we
carry out quantum dynamics calculations to check the final convergence of the PES. For every
fitting procedure, we save two PESs with least RMSE and then do one refitting procedure
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through using them as the initial sets for the weights and biases until no changes of these
two PESs. When the dynamical results on these PESs also agree to each other well, even to
the results from the PESs fitted with fewer points, we can believe the PES has converged
for the training and stop the training procedure. Otherwise, we should select some new
additional configurations from molecular dynamics simulations, perform DFT calculations
with the given structures, and carry out NN training again with these additional new energy
points, and then continue quantum dynamics calculations.

The Levenberg-Marquardt algorithm we adopted for NN fitting is an iteratively fitting
procedure with high computational cost. The iteration time grows rapidly with respect to
the size of fitting samples and network parameters. In order to accelerate the NN fitting
procedure, we divided the energy points into two main parts according to the height of the
carbon atom(ZC) above the surface (i.e., entrance region and interaction region), trained
and tested these two parts separately to obtain desired performances. These two segmental
parts will be finally connected with a smooth window function to yield a global PES. Thus,
we calculate the interaction poential energy as

E = f(ZC) × Ventrance + (1 − f(ZC)) × Vinteraction, (SI.6)

where the window function f(ZC) with

f(ZC) =


0.0 ZC ≤ 2.40Å

1.0 ZC ≥ 2.45Å

0.5 ∗ (1.0 − cos (ZC−2.40)π
0.05

) others

(SI.7)

In addition, we also perform NN fitting of all the energy points to obtain a global PES
and compare the PESs constructed using these two different strategies. The division of the
PES into two main parts can substantially reduce the coordinate space for each part, and
make it feasible to reach the desired RMSE with less number of neurons. Such approach not
only speeds up the training procedure, but also gives us the flexibility to put more efforts
and/or more DFT energy points in a region of especial importance to dynamics.

We used a 26-60-60-1 NN structure to separately fit our database (∼105) consisted of two
parts and finally obtained the one PESs with least RMSE values. For the entrance region
part, the obtained RMSE values is only 5.4 meV, while for the interaction region part, the
obtained RMSE values is 14.4 meV. Meanwhile, we do a NN training with fewer points
(about 70,000) and obtain the closed RMSE values.

8D quantum model Hamiltonian and basis functions

The eight-dimensional (8D) quantum model Hamiltonian for the XYCZ3 system in the
Jacobi coordinates (R, r, s, χ, θ1, ϕ1, θ2, ϕ2) shown in Fig. 1 can be written as

Ĥ = − 1

2µR

∂2

∂R2
− 1

2µr

∂2

∂r2
+

l̂2

2µrr2
+ K̂vib

CH3

+ K̂rot
CH3

+ V (R, r, s, χ, θ1, ϕ1, θ2, ϕ2)

(SI.8)

where µR and µr are the mass of CH4 and reduced mass of H-CH3, R is the distance from
the center of mass of CH4 to the surface, r is the distance from the center of mass of CH3 to
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FIG. SI 1. The eight-dimensional Jacobi coordinates for the X+YCZ3 system. Z and Y represent

H atoms, and X represents the fixed top Ni atom of a static distorted Ni (111) surface.

H, s is the bond length of CH bond in CH3, χ is the angle between a CH bond and the C3v

symmetry axis of CH3. In this work, we have fixed the CH bond length in the CH3 group
because it almost does not change in all the TS geometries [16]. We define the bending angle
between vectors R and r to be θ1; ϕ1 is the azimuth angle of the rotation of HCH3 around
the vector r; θ2 is the bending angle between vectors r and s; ϕ2 is the azimuth angle of the
rotation of CH3 around the vector s. The first two terms in Eq. SI.8 are the kinetic energy
operators for R and r, respectively, and l̂ is the orbital angular momentum operator of atom
H with respect to CH3. K̂

vib
CH3

and K̂rot
CH3

are the vibrational and rotational kinetic energy
operators of CH3, respectively.

No vibration-rotation coupling exists due to the symmetry requirement and the definition
of the CH3-fixed frame. Because CH3 is a symmetric top rotor, K̂rot

CH3
is given by

K̂rot
CH3

=
1

2IA
ĵ2 + (

1

2IC
− 1

2IA
)ĵ2z , (SI.9)

where ĵ2 is the angular monetum operator of CH3, and ĵ2z is the projection of ĵ2 on the C3v

symmetry axis of CH3, IA and IC are rotational inertia of CH3, defined as

IA =
3

2
mHs

2(sin2 χ+
2mc

mc + 3mH

cos2 χ), (SI.10)

and
IC = 3mHs

2 sin2 χ. (SI.11)

The sticking probability, S0, is obtained at a dividing surface placed as r=1.85 Å using
a flux formalism. An L-shaped expansion for R and r was used to reduce the size of the
basis set. A total of 300 sine bais functions ranging from 3.0 to 10.0 Bohr were used for
the R basis set expansion with 130 nodes in the interaction region; and 6 and 30 basis
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functions of r were used in the asymptotic and interaction regions, respectively. For the
vibration of CH3 group, 5 basis functions is given. The size of the rotational basis functions
is controlled by the parameters, Jmax=51, lmax=30, jmax=21 and kmax=3. Both OpenMP
and MPI parallelization were used to render the computational costs manageable.
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