Quantum Mechanical Study of the β - and δ -Lyase Reactions during the Base Excision Repair Process: Application to FPG

Shahin Sowlati-Hashjin^a and Stacey D. Wetmore^{a*}

^aDepartment of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada

Supporting Information (20 pages)

Table S1 Relative energies (ΔE) and Gibbs energies (ΔG) for stationary points characterized along the proton abstraction and phosphate elimination reactions in the β -lyase step for the O-base pathway	2
Table S2 Relative energies (ΔE) and Gibbs energies (ΔG) for stationary points characterized along the proton abstraction reaction in the β -lyase step for the N-base pathway.	2
Table S3 Relative energies (ΔE) and Gibbs energies (ΔG) for stationary points characterized along the proton abstraction reaction in the δ -lyase step for the O-base and N-base pathways	3
Table S4 Relative energies (ΔE) and Gibbs energies (ΔG) for stationary points characterized along the phosphate elimination reaction and the enol-keto rearrangement in the δ -lyase step	3
Scheme S1 Molecular orbital interpretation of the δ -elimination reaction	4
Fig. S1 Overlay of the initial 1-[4-hydroxy-3,5-diyl dimethyl bis(phosphate)pentylidene] pyrrolidinium model and the crystal structure of (a) the borohydride-trapped abasic site (PDB ID: 1K82) or (b) the Schiff base intermediate (PDB ID: 1L1Z)	4
Fig. S2 Overlay of the optimized transition structures for the <i>syn</i> and <i>anti</i> orientation of OG ⁻ in the C2'–H abstraction step along the O-base pathway	5
Fig. S3 Optimized structures along the C2'–H abstraction step for the <i>syn</i> N-base pathway	5
IEF-PCM-B3LYP/6-31G(d) coordinates and energies (a.u.) for transition states	6

Table S1 Relative energies (ΔE) and Gibbs energies (ΔG) for stationary points characterized along the proton abstraction and phosphate elimination reactions in the β -lyase step for the O-base pathway (kJ/mol).^a

			syn			anti	
Reaction Step	Stationary Point	ΔE ^b	ΔE ^c	ΔG^d	ΔE ^b	ΔE ^c	ΔG^d
С2'-Н	RC1	0.0	0.0	0.0	0.0	0.0	0.0
Abstraction	TS1	32.5	31.9	22.0	60.1	58.9	62.4
	IC1	25.3	24.9	-0.6	41.0	40.2	31.1
3′-PO4	TS2	48.4	47.4	19.3	-	-	-
Elimination	IC2	-7.6	-7.4	-18.7	-	-	-

^aEnergies reported relative to the corresponding (O-base or N-base) reactant complex. ^bUnscaled relative energies obtained with IEF-PCM-B3LYP/6-31G(d). ^cIEF-PCM-B3LYP-D3/6-311+G(2df,2p) relative energies including scaled (0.9806) zero-point vibrational energy correction. ^dSMD-M06-2X/6-311+G(2df,2p)//IEF-PCM-B3LYP/6-31G(d) relative energies including unscaled thermal corrections.

Table S2 Relative energies (ΔE) and Gibbs energies (ΔG) for stationary points characterized along the proton abstraction reaction in the β -lyase step for the N-base pathway (kJ/mol).^a

			syn			anti	
Reaction Step	Stationary Point	ΔE ^b	ΔE ^c	ΔG^d	ΔE ^b	ΔE ^c	ΔG^d
C2'–H Abstraction	RC1	0.0	0.0	0.0	0.0	0.0	0.0
	TS1	54.5	53.5	51.5	89.7	88.1	83.4
	IC1	-8.0	-7.9	-2.6	17.4	17.1	7.4

^aEnergies reported relative to the corresponding (O-base or N-base) reactant complex. ^bUnscaled relative energies obtained with IEF-PCM-B3LYP/6-31G(d). ^cIEF-PCM-B3LYP-D3/6-311+G(2df,2p) relative energies including scaled (0.9806) zero-point vibrational energy correction. ^dSMD-M06-2X/6-311+G(2df,2p)//IEF-PCM-B3LYP/6-31G(d) relative energies including unscaled thermal correction.

Table S3 Relative energies (ΔE) and Gibbs energies (ΔG) for stationary points characterized along the proton abstraction reaction in the δ -lyase step for the O-base and N-base pathways (kJ/mol).^a

		O-base			_		N-base	
Reaction Step	Stationary Point	ΔE ^b	ΔE ^c	ΔG^d		ΔE ^b	ΔE ^c	ΔG^d
	RC2	0.0	0.0	0.0	-	0.0	0.0	0.0
С4′–Н	TS3	38.4	37.7	34.7		44.4	43.6	48.0
Abstraction	IC3	-34.9	-34.2	-53.8		-104.6	-102.6	-102.8

^aEnergies reported relative to the corresponding (O-base or N-base) reactant complex. ^bUnscaled relative energies obtained with IEF-PCM-B3LYP/6-31G(d). ^cIEF-PCM-B3LYP-D3/6-311+G(2df,2p) relative energies including scaled (0.9806) zero-point vibrational energy correction. ^dSMD-M06-2X/6-311+G(2df,2p)//IEF-PCM-B3LYP/6-31G(d) relative energies including unscaled thermal corrections.

Table S4 Relative energies (ΔE) and Gibbs energies (ΔG) for stationary points characterized along the phosphate elimination reaction and the enol-keto rearrangement in the δ -lyase step (kJ/mol).^a

			Direct		Assi	sted (N-b	ase)
Reaction Step	Stationary Point	ΔE ^b	ΔE ^c	ΔG^d	ΔE ^b	ΔE ^c	ΔG^d
5/ DO	RC3/RC3'	0.0	0.0	0.0	0.0	0.0	0.0
5 ⁷ -PO ₄ Elimination	TS4′				26.7	26.2	21.9
	TS4/IC4'	160.3	157.2	188.6	7.6	7.4	18.8
	TS4″				164.3	161.1	185.3
Enol-Keto Rearrangement	IC4/IC4"	81.5	79.9	78.9	74.0	72.5	92.0
	TS5	173.2	169.8	200.6		-	
	Р	151.9	148.9	176.8		-	

^aEnergies reported relative to the corresponding (O-base and N-base) reactant complex. ^bUnscaled relative energies obtained with IEF-PCM-B3LYP/6-31G(d). ^cIEF-PCM-B3LYP-D3/6-311+G(2df,2p) relative energies including scaled (0.9806) zero-point vibrational energy correction. ^dSMD-M06-2X/6-311+G(2df,2p)//IEF-PCM-B3LYP/6-31G(d) relative energies including unscaled thermal corrections.

Scheme S1 Molecular orbital interpretation of the δ -elimination reaction, which depicts bending of the phosphate group to allow the p-orbital of C4' to contribute to the conjugated π -system and result in a more stable intermediate.

Fig. S1 Overlay of the initial 1-[4-hydroxy-3,5-diyl dimethyl bis(phosphate)pentylidene] pyrrolidinium model (blue) and the crystal structure (red) of (a) the borohydride-trapped abasic site (PDB ID: 1K82) or (b) the Schiff base intermediate (PDB ID: 1L1Z).

Fig. S2 Overlay of the optimized transition structures for the *syn* (red) and *anti* (blue) orientation of OG⁻ in the C2'–H abstraction step along the O-base pathway. Important distances (Å) and angles (deg, in parentheses) obtained with IEF-PCM-B3LYP/6-31G(d) level of theory are provided. Italicized bold values correspond to the *anti* OG complex.

Fig. S3 Optimized structures along the C2'–H abstraction step for the *syn* N-base pathway. Important distances (Å) and angles (deg, in parentheses) obtained with IEF-PCM-B3LYP/6-31G(d) level of theory are provided.

IEF-PCM-B3LYP/6-31G(d) Coordinates and Energies (a.u.) for Transition States

C2'-H abstraction (anti N-base) (Figure 2, TS1) (-2464.44529)

Ν	-1.36710	-0.54829	-1.04782
С	-1.76274	0.02182	-2.25541
Ν	-2.98184	-0.56462	-2.60077
С	-3.33406	-1.49604	-1.62951
С	-4.44389	-2.35518	-1.50037
0	-5.43728	-2.50795	-2.22476
Ν	-4.31369	-3.13189	-0.30549
С	-3.26453	-3.06905	0.57133
Ν	-3.35679	-3.86765	1.69980
Ν	-2.23639	-2.26689	0.42205
С	-2.30004	-1.46957	-0.68858
0	-1.16631	0.87730	-2.91558
Н	-3.52139	-0.30249	-3.41140
Н	-5.10765	-3.72922	-0.10489
Н	-3.76978	-4.78344	1.56279
Н	-2.47658	-3.91666	2.19873
Н	3.18902	2.02584	0.61172
С	1.00032	-3.11360	3.58383
С	1.34166	-1.65053	3.28146
Ν	1.36250	-1.60036	1.80258
С	1.39969	-2.95293	1.20576
С	1.64571	-3.87253	2.41053
Н	0.61215	-0.93750	3.67253
Н	2.19102	-2.99234	0.45246
Н	0.43486	-3.15274	0.72672
Н	1.22275	-4.86933	2.25837
Н	-0.08718	-3.25075	3.57541
Н	1.37385	-3.42951	4.56177
0	-0.01097	3.86106	0.44903
С	0.08558	2.52588	-0.04671
С	1.54828	2.23153	-0.34506
0	2.30491	2.34850	0.86694
С	1.81709	0.85567	-0.99845
0	3.26799	0.81538	-1.06582
С	1.24404	-0.37715	-0.29692
С	1.35780	-0.47957	1.10977
P	4.11603	-0.46242	-1.72498

0	5.46301	0.09454	-2.08521
0	3.24488	-1.22806	-2.67741
0	4.27867	-1.44848	-0.38210
С	5.12771	-0.99640	0.66428
Н	-0.50480	2.40179	-0.96266
Н	-0.30075	1.82957	0.70753
Н	1.90277	2.99112	-1.05897
Н	1.41930	0.86761	-2.01746
Н	-0.06504	-0.40251	-0.55422
Н	1.51965	-1.28134	-0.84354
Н	1.39145	0.43036	1.70407
Н	6.13258	-0.76791	0.29214
Н	4.72212	-0.09640	1.14765
Н	5.19118	-1.79692	1.40958
Н	2.33245	-1.38446	3.67021
Н	2.72205	-3.98792	2.58288
Р	-1.50570	4.45970	0.84993
0	-2.44548	4.36622	-0.32260
0	-1.23705	5.74778	1.57288
0	-1.96982	3.32630	1.99145
С	-3.07330	2.47816	1.69855
Н	-3.25451	1.86839	2.59144
Н	-3.97916	3.05014	1.46685
Н	-2.86849	1.81163	0.85198

C2'-H abstraction (*syn* N-base) (-2464.46263)

Ν	-0.31141	-2.12780	-0.29548
С	0.04601	-3.46673	-0.34499
Ν	-1.02190	-4.16399	-0.90260
С	-2.03189	-3.25964	-1.23275
С	-3.30819	-3.42578	-1.80584
0	-3.88337	-4.45277	-2.20160
Ν	-3.96171	-2.16219	-1.90574
С	-3.44261	-0.95173	-1.49853
Ν	-4.19859	0.16212	-1.70335
Ν	-2.24044	-0.83969	-0.96534
С	-1.55812	-2.00488	-0.84225
0	1.10711	-3.98905	0.03774
Н	-1.00520	-5.15178	-1.10432
Н	-4.87752	-2.19810	-2.33811
Н	-5.19549	0.03266	-1.81449

Н	-3.92846	1.00239	-1.15859
Н	2.26764	2.76568	0.99906
С	2.98054	-2.61890	4.12486
С	2.57980	-1.17735	3.79890
Ν	2.52444	-1.16808	2.32096
С	3.28078	-2.30471	1.74027
С	3.91952	-2.98635	2.96157
Н	1.61462	-0.87731	4.21267
Н	4.02038	-1.92357	1.02780
Н	2.58212	-2.95465	1.20246
Н	4.01525	-4.06578	2.81727
Н	2.09421	-3.26325	4.11835
Н	3.45649	-2.70168	5.10597
0	-1.46149	2.93671	1.04953
С	-0.76098	1.76292	0.61131
С	0.64303	2.16057	0.19254
0	1.35899	2.64822	1.33461
С	1.46559	1.04923	-0.50489
0	2.78790	1.62181	-0.67825
С	1.65455	-0.28822	0.21779
С	1.86471	-0.26960	1.62233
Р	3.28269	2.18815	-2.17584
0	4.50484	3.01431	-1.89100
0	2.09902	2.68522	-2.95144
0	3.72330	0.75605	-2.90061
С	4.88263	0.09403	-2.41306
Н	-1.27800	1.29385	-0.23052
Н	-0.73858	1.03862	1.43496
Н	0.55624	2.96460	-0.55244
Н	1.02107	0.86313	-1.48707
Н	0.60582	-1.10770	0.03944
Н	2.37947	-0.90172	-0.32671
Н	1.40623	0.52139	2.20906
Н	5.76240	0.74662	-2.45492
Н	4.74642	-0.23925	-1.37468
Н	5.05052	-0.78446	-3.04498
Н	3.34342	-0.46650	4.13939
Н	4.92143	-2.58142	3.14594
Р	-3.10139	2.93611	1.10784
0	-3.70098	2.46516	-0.20261
0	-3.52352	4.24920	1.69836
0	-3.27499	1.71214	2.22568
С	-4.58143	1.17955	2.39121

Н	-4.52175	0.38654	3.14379
Н	-5.28563	1.94673	2.74378
Н	-4.96337	0.75826	1.45342

C2'-H abstraction (O-base) (Figure 2, TS1) (-2464.45936)

N	-1.92603	-1.71618	-1.51013
С	-1.36323	-0.49207	-1.65102
N	-2.22865	0.51905	-1.31505
С	-3.41084	-0.09072	-0.92803
С	-4.65271	0.42819	-0.48671
0	-5.03193	1.59241	-0.31104
N	-5.54939	-0.64759	-0.20969
С	-5.26411	-1.98294	-0.35367
N	-6.26326	-2.86636	0.03703
N	-4.11363	-2.44174	-0.77220
С	-3.18359	-1.47047	-1.05486
0	-0.14653	-0.26587	-2.04889
Н	-1.98181	1.52952	-1.24011
Н	-6.44365	-0.35880	0.17003
Н	-7.20912	-2.58230	-0.19516
Н	-6.06649	-3.80631	-0.28832
Н	3.11715	0.86680	1.96042
С	-1.27015	-3.84880	2.02161
С	-0.33674	-2.69401	2.40276
N	0.43901	-2.45979	1.16539
С	0.30508	-3.58555	0.21771
С	-0.41967	-4.66559	1.03243
Н	-0.85829	-1.78031	2.69822
Н	1.29131	-3.89655	-0.14197
Н	-0.30143	-3.24064	-0.62967
Н	-1.01914	-5.31962	0.39375
Н	-2.16108	-3.46068	1.51568
Н	-1.59056	-4.42362	2.89517
0	0.72376	3.32228	0.25292
С	0.92167	1.95179	-0.11297
С	2.28671	1.47627	0.34888
0	2.28436	1.34051	1.77504
С	2.72119	0.14231	-0.31161
0	3.89550	-0.30358	0.41226
С	1.69981	-0.99223	-0.32175
С	1.06004	-1.32639	0.89374

P	5.42270	-0.05804	-0.23290
0	6.36900	-0.49930	0.84683
0	5.48774	1.28083	-0.90633
0	5.39987	-1.17383	-1.46751
С	5.46233	-2.55119	-1.12187
H	0.83742	1.84257	-1.19804
H	0.14227	1.33168	0.34200
Н	3.04048	2.22064	0.05632
Н	2.99535	0.35994	-1.34864
Н	2.04831	-1.84890	-0.90694
Н	1.01786	-0.57447	1.67955
H	6.36852	-2.77886	-0.54892
H	4.58921	-2.85580	-0.52887
H	5.47018	-3.12351	-2.05547
H	0.34504	-2.98396	3.21250
Н	0.30289	-5.28802	1.57410
Н	0.68116	-0.61459	-1.18502
Р	-0.81120	3.90448	0.11663
0	-1.38818	3.29214	1.55025
0	-1.53286	3.20627	-1.02427
0	-0.74132	5.40172	0.17098
С	-2.78786	3.43728	1.78441
Н	-3.00817	2.95667	2.74357
Н	-3.06916	4.49707	1.85052
Н	-3.37981	2.95984	0.99578

C2'-H abstraction (syn O-base) (-2464.44695)

Ν	-2.72755	-0.00101	0.07389
С	-1.93326	0.80990	-0.65689
Ν	-2.66992	1.62410	-1.48562
С	-4.00903	1.31783	-1.27651
С	-5.20160	1.83518	-1.82992
0	-5.38268	2.72376	-2.67091
Ν	-6.31946	1.15732	-1.25716
С	-6.24833	0.15950	-0.31607
Ν	-7.46017	-0.32360	0.15386
Ν	-5.12762	-0.29909	0.18152
С	-3.99977	0.30627	-0.30810
0	-0.64600	0.88468	-0.63620
Н	-2.28366	2.30330	-2.12515
Н	-7.22244	1.50436	-1.55999

Н	-8.20033	-0.40335	-0.53480
Н	-7.33824	-1.18134	0.68002
Н	3.82744	-1.45761	0.90725
С	-1.37614	-1.06942	4.60832
С	0.05556	-0.93541	4.07960
Ν	-0.07193	-1.31761	2.65830
С	-1.32316	-2.06646	2.40207
С	-1.93309	-2.25547	3.80019
Н	0.46700	0.07331	4.16276
Н	-1.08973	-3.01471	1.90525
Н	-1.95795	-1.47254	1.73479
Н	-3.02566	-2.27227	3.76649
Н	-1.94275	-0.15813	4.38650
Н	-1.40268	-1.23355	5.68932
0	3.72733	2.09035	-0.28725
С	2.56836	1.25431	-0.27719
С	3.02060	-0.19770	-0.28411
0	3.67736	-0.49507	0.95419
С	1.89989	-1.22861	-0.54714
0	2.52956	-2.52578	-0.37785
С	0.65723	-1.17682	0.33732
С	0.80053	-0.97890	1.72602
Р	2.70852	-3.53368	-1.70310
0	3.55027	-4.67758	-1.21420
0	3.02966	-2.72027	-2.92258
0	1.13329	-4.03532	-1.90668
С	0.60169	-4.95032	-0.95809
Н	1.94783	1.45525	-1.15807
Н	1.96396	1.47022	0.61159
Н	3.73644	-0.31987	-1.11024
Н	1.58807	-1.12134	-1.59003
Н	-0.06680	-1.94301	0.04772
Н	1.67931	-0.45017	2.08817
Н	1.20776	-5.86163	-0.90050
Н	0.54931	-4.50381	0.04464
Н	-0.41263	-5.20676	-1.28212
Н	0.73354	-1.63171	4.59037
Н	-1.59498	-3.20125	4.23994
Р	3.51438	3.72842	-0.28193
0	2.91984	3.84027	1.28117
0	2.42256	4.13498	-1.23727
0	4.88715	4.33749	-0.34246
С	2.27252	5.05792	1.61740

Н	1.90738	4.96762	2.64657
Н	2.96657	5.90995	1.56773
Н	1.42684	5.25848	0.94886
Н	-0.06925	-0.06236	-0.07644

3'-PO₄ protonation/elimination (O-base) (Figure 3, TS2) (-2464.45330)

Ν	-2.64419	0.39426	-0.52323
С	-1.97644	0.37022	-1.69548
N	-2.58802	-0.46762	-2.60327
С	-3.70631	-1.00628	-1.97996
С	-4.69930	-1.90931	-2.41890
0	-4.84972	-2.48026	-3.50672
N	-5.63638	-2.12844	-1.36490
С	-5.57363	-1.56286	-0.11491
Ν	-6.61560	-1.86903	0.74783
Ν	-4.63823	-0.73041	0.26647
С	-3.70273	-0.44584	-0.69551
0	-0.90538	1.01153	-2.00976
Н	-2.25945	-0.64905	-3.54004
Н	-6.41675	-2.72569	-1.61323
Н	-6.95847	-2.82251	0.70564
Н	-6.40329	-1.58405	1.69706
Н	-0.25181	1.79562	-1.10881
Н	0.60965	-0.00520	-1.81368
С	-1.45720	-2.52093	3.85213
С	-1.16168	-2.16510	2.39154
Ν	-0.34615	-0.95522	2.51220
С	-0.58132	-0.25697	3.77630
С	-1.61396	-1.13703	4.50937
Н	-0.61130	-2.94835	1.85866
Н	-0.95795	0.76000	3.59952
Н	0.35936	-0.16321	4.33867
Н	-1.45430	-1.15363	5.59178
Н	-0.60377	-3.05542	4.28634
Н	-2.34509	-3.15153	3.96065
0	4.25687	-0.60322	-1.24739
С	3.42258	-0.11170	-0.20063
С	2.19898	0.56360	-0.81739
0	1.37074	-0.44645	-1.37931
С	1.50781	1.45719	0.23242
0	0.51687	2.33626	-0.53209

С	0.87414	0.83760	1.42608
С	0.26369	-0.37507	1.44023
P	0.21426	4.01374	-0.06697
0	-0.64840	4.50954	-1.18057
0	1.55493	4.54473	0.31737
0	-0.63236	3.79666	1.31236
С	-2.02193	3.43800	1.24349
Н	3.97721	0.60824	0.41349
Н	3.10003	-0.93729	0.44417
Н	2.55928	1.23620	-1.61116
Н	2.23431	2.21040	0.54053
Н	0.83921	1.46874	2.30890
Н	0.27299	-0.98739	0.54403
Н	-2.57296	4.15128	0.62299
Н	-2.15418	2.42721	0.84264
Н	-2.40052	3.47658	2.26913
Н	-2.09479	-1.96721	1.84096
Н	-2.62374	-0.75260	4.32606
Р	5.72238	-1.25298	-0.84237
0	5.13364	-2.66489	-0.16131
0	6.38047	-0.44418	0.24586
0	6.41970	-1.56469	-2.13672
С	6.03560	-3.39825	0.65385
Н	5.47957	-4.23339	1.09440
Н	6.87028	-3.80795	0.06700
Н	6.44894	-2.77433	1.45582

C4'-H abstraction (N-base) (Figure 4, TS3) (-1781.47255)

0	1.92179	-1.75971	-0.08896
С	0.85847	-2.13450	0.77919
С	-0.41119	-1.38004	0.39114
0	-0.89669	-1.71103	-0.88642
С	-1.38128	-1.22429	1.41833
С	-2.76131	-1.02592	1.34190
С	-3.48616	-1.08540	0.14912
Н	1.12906	-1.91942	1.82005
Н	0.67223	-3.21432	0.68659
Н	-0.07328	-0.13746	0.26092
Н	-0.95467	-1.14905	2.41782
Н	-3.28431	-0.79790	2.26617
Н	-2.94596	-1.31603	-0.76349

N	-4.79020	-0.87072	0.03009
Н	-0.39555	-1.16518	-1.55382
С	-5.68931	-0.50847	1.14200
Н	-5.61637	-1.24686	1.94705
Н	-5.38675	0.46562	1.54635
С	-7.08288	-0.45942	0.49404
Н	-7.73082	0.27706	0.97618
Н	-7.56860	-1.43838	0.57498
С	-5.50844	-0.92547	-1.25930
С	-6.78969	-0.13348	-0.98132
Н	-5.73312	-1.96981	-1.51234
Н	-4.88751	-0.50313	-2.05308
Н	-7.60405	-0.41722	-1.65300
Н	-6.60163	0.93888	-1.10636
Р	3.40362	-2.45153	0.18774
0	3.00926	-3.97816	-0.37346
0	3.66645	-2.54285	1.66939
0	4.36737	-1.79471	-0.75681
C	3.86818	-5.03797	0.01986
Н	3.45362	-5.96788	-0.38443
Н	4.88308	-4.90643	-0.38257
Н	3.93423	-5.11425	1.11180
N	0.23646	1.12460	-0.41603
C	0.51473	1.05544	-1.76705
Ν	1.15579	2.22889	-2.13543
C	1.35866	2.99879	-0.99085
C	1.96084	4.25987	-0.79441
0	2.50634	5.02582	-1.59909
Ν	1.88466	4.61563	0.58774
C	1.29334	3.86401	1.56995
Ν	1.37943	4.35584	2.85861
Ν	0.71128	2.70783	1.35309
C	0.77458	2.28373	0.05691
0	0.23036	0.12112	-2.54466
Н	1.60084	2.36304	-3.03120
Н	2.36897	5.47291	0.82851
Н	1.32022	5.36185	2.96483
Н	0.77375	3.85741	3.49948

C4'-H abstraction (O-base) (Figure 4, TS3) (-1781.47149)

0	0.09259	2.63856	-0.36064
С	-0.33956	1.56275	-1.19607
С	-1.10887	0.51080	-0.38786
0	-2.23591	1.00581	0.27640
С	-1.22087	-0.77546	-0.96300
С	-2.21855	-1.75034	-0.82780
С	-3.43130	-1.54364	-0.17568
Н	0.55203	1.09529	-1.62363
Н	-0.96913	1.95961	-2.00044
Н	-0.32015	-1.08146	-1.49033
Н	-2.01644	-2.72545	-1.26183
Н	-3.62031	-0.57847	0.28090
Ν	-4.40123	-2.44798	-0.04657
Н	-2.05127	1.93281	0.56161
С	-4.34347	-3.82023	-0.57891
Н	-4.11657	-3.80485	-1.65021
Н	-3.54246	-4.37412	-0.07221
С	-5.73320	-4.39857	-0.26635
Н	-5.69803	-5.47734	-0.09347
Н	-6.41288	-4.21444	-1.10605
С	-5.65644	-2.19375	0.68495
С	-6.18956	-3.60190	0.96883
Н	-6.35069	-1.62669	0.05031
Н	-5.45624	-1.60732	1.58562
Н	-7.27355	-3.61283	1.11019
Н	-5.72297	-4.00345	1.87560
Р	-0.67807	4.10147	-0.39876
0	-1.86438	3.69126	0.74158
0	-1.36541	4.31626	-1.71953
0	0.25229	5.10533	0.20977
С	-3.03779	4.50243	0.76377
Н	-3.70025	4.09986	1.53581
Н	-2.78731	5.53986	1.01839
Н	-3.54549	4.48655	-0.20674
Н	-0.21225	0.14778	0.50538
Ν	2.07218	-0.85555	-0.23552
С	1.81488	-0.43352	1.02753
Ν	2.95437	-0.47108	1.80569
С	3.99551	-0.90986	0.99471
С	5.36422	-1.13865	1.24755
0	6.03146	-0.99363	2.28109

Ν	5.99397	-1.60405	0.05347
C	5.36104	-1.81626	-1.14663
Ν	6.16976	-2.21502	-2.20034
N	4.08344	-1.61331	-1.34740
C	3.40365	-1.13798	-0.25546
0	0.68919	-0.05363	1.50920
Н	3.02031	-0.12394	2.75065
Н	6.99816	-1.72160	0.12416
Н	6.91201	-2.86537	-1.96712
Н	5.62053	-2.53209	-2.99095

Proton transfer from O4' to OG (Figure 5, TS4') (-1780.98290)

0	0.80285	-2.32302	0.91572
С	0.03984	-2.45588	-0.30454
С	-1.19913	-1.57654	-0.25381
0	-1.03019	-0.27870	-0.31961
С	-2.42784	-2.19114	-0.17358
С	-3.73449	-1.55292	-0.17200
С	-4.00931	-0.22589	-0.27422
Н	-0.23175	-3.50779	-0.44219
Н	0.66715	-2.14345	-1.15158
Н	-2.43174	-3.27682	-0.10138
Н	-4.58003	-2.23984	-0.10325
Н	-3.19197	0.48276	-0.35811
N	-5.28871	0.34389	-0.35946
Н	0.20470	0.25303	-0.58477
С	-6.47235	-0.45242	-0.05581
Н	-6.68205	-1.14800	-0.88036
Н	-6.32133	-1.07217	0.84675
С	-7.60831	0.57978	0.16508
Н	-7.92186	0.57026	1.21523
Н	-8.49566	0.36111	-0.43799
С	-5.49133	1.70986	0.10861
С	-6.97534	1.94370	-0.18653
Н	-4.82556	2.39868	-0.42487
Н	-5.28746	1.82557	1.19170
Н	-7.10868	2.16704	-1.25124
Н	-7.40026	2.77194	0.39050
Р	2.17072	-3.23475	1.07225
0	3.16242	-2.43647	-0.01477
0	1.93975	-4.63734	0.56335

0	2.69320	-2.96995	2.45681
С	3.77660	-3.16728	-1.06409
Н	4.09302	-2.44662	-1.82686
Н	4.66401	-3.71489	-0.71117
Н	3.08776	-3.88981	-1.51227
Ν	1.16447	0.84344	-0.85037
С	1.94227	0.61188	-1.98120
Ν	2.95265	1.57306	-1.96046
С	2.82540	2.35668	-0.81590
С	3.56904	3.45300	-0.33157
0	4.57851	4.00593	-0.79123
Ν	2.99229	3.92468	0.88718
С	1.86992	3.41125	1.48452
Ν	1.50155	3.96891	2.69496
Ν	1.18138	2.40698	0.99674
С	1.69394	1.88494	-0.15057
0	1.78311	-0.25204	-2.84498
Н	3.72950	1.57211	-2.60296
Н	3.51630	4.66336	1.34224
Н	1.61511	4.97245	2.78059
Н	0.58414	3.65415	2.98939

Assisted 5'-PO₄ protonation/elimination (by OG) (Figure 5, TS4") (-1780.93049)

0	0.80285	-2.32302	0.91572
С	0.03984	-2.45588	-0.30454
С	-1.19913	-1.57654	-0.25381
0	-1.03019	-0.27870	-0.31961
С	-2.42784	-2.19114	-0.17358
С	-3.73449	-1.55292	-0.17200
С	-4.00931	-0.22589	-0.27422
Н	-0.23175	-3.50779	-0.44219
Н	0.66715	-2.14345	-1.15158
Н	-2.43174	-3.27682	-0.10138
Н	-4.58003	-2.23984	-0.10325
Н	-3.19197	0.48276	-0.35811
Ν	-5.28871	0.34389	-0.35946
Н	0.20470	0.25303	-0.58477
С	-6.47235	-0.45242	-0.05581
Н	-6.68205	-1.14800	-0.88036
Н	-6.32133	-1.07217	0.84675
С	-7.60831	0.57978	0.16508

Н	-7.92186	0.57026	1.21523
Н	-8.49566	0.36111	-0.43799
С	-5.49133	1.70986	0.10861
С	-6.97534	1.94370	-0.18653
Н	-4.82556	2.39868	-0.42487
Н	-5.28746	1.82557	1.19170
Н	-7.10868	2.16704	-1.25124
Н	-7.40026	2.77194	0.39050
Р	2.17072	-3.23475	1.07225
0	3.16242	-2.43647	-0.01477
0	1.93975	-4.63734	0.56335
0	2.69320	-2.96995	2.45681
С	3.77660	-3.16728	-1.06409
Н	4.09302	-2.44662	-1.82686
Н	4.66401	-3.71489	-0.71117
Н	3.08776	-3.88981	-1.51227
Ν	1.16447	0.84344	-0.85037
С	1.94227	0.61188	-1.98120
Ν	2.95265	1.57306	-1.96046
С	2.82540	2.35668	-0.81590
С	3.56904	3.45300	-0.33157
0	4.57851	4.00593	-0.79123
Ν	2.99229	3.92468	0.88718
С	1.86992	3.41125	1.48452
Ν	1.50155	3.96891	2.69496
Ν	1.18138	2.40698	0.99674
С	1.69394	1.88494	-0.15057
0	1.78311	-0.25204	-2.84498
Н	3.72950	1.57211	-2.60296
Н	3.51630	4.66336	1.34224
Н	1.61511	4.97245	2.78059
Н	0.58414	3.65415	2.98939

Direct 5'-PO₄ protonation/elimination (Figure 5, TS4) (-1163.63675)

0	2.30701	0.00153	-0.94531
С	1.54084	1.78103	0.31256
С	0.28067	1.19876	0.26812
0	0.21888	-0.14169	0.49571
С	-0.85826	1.95217	-0.03839
С	-2.20605	1.55019	-0.07030
С	-2.64119	0.24985	0.16194

Н	1.69033	2.78302	-0.07981
Н	2.33851	1.34306	0.89571
Н	-0.66641	3.00444	-0.23388
Н	-2.94065	2.31508	-0.30562
Н	-1.90569	-0.51202	0.39757
Ν	-3.91063	-0.16280	0.11084
Н	1.09191	-0.43297	0.05020
С	-5.05690	0.69781	-0.21969
Н	-5.06973	1.58375	0.42485
Н	-4.97032	1.03943	-1.25982
С	-6.27712	-0.21322	-0.01106
Н	-7.10310	0.04929	-0.67730
Н	-6.63669	-0.12670	1.02064
С	-4.31928	-1.55897	0.35164
С	-5.72217	-1.62643	-0.26181
Н	-4.34696	-1.76012	1.43131
Н	-3.60380	-2.24702	-0.10677
Н	-6.33275	-2.41356	0.18854
Н	-5.65104	-1.82310	-1.33757
Р	3.80724	-0.40565	-0.62751
0	3.67988	-0.43719	1.07782
0	4.81211	0.68336	-0.95741
0	4.09854	-1.82751	-1.08017
С	4.89201	-0.64656	1.77294
Н	4.68850	-0.59298	2.85037
Н	5.31736	-1.63569	1.54673
Н	5.63969	0.11465	1.51073

Enol-keto rearrangement (Figure 6, TS5) (-1163.63183)

0	-2.89911	-0.42118	0.98680
Н	-1.89137	-0.83654	-0.06107
P	-4.32918	-0.19576	0.37565
0	-4.29368	1.49669	0.16672
0	-5.43222	-0.47626	1.38900
0	-4.48408	-0.79710	-1.01552
С	-5.51664	2.08131	-0.22476
Н	-5.34723	3.15114	-0.40956
Н	-5.90959	1.62775	-1.14803
Н	-6.28424	1.97602	0.55600
С	-1.22732	-1.24015	-0.97559
С	0.19579	-1.13217	-0.66863

0	0.89008	-2.06025	-0.21048
С	0.76904	0.23002	-0.88250
С	2.06381	0.62757	-0.68388
С	3.06536	-0.25542	-0.19234
Н	-1.56919	-0.60521	-1.79786
Н	-1.54909	-2.27538	-1.10691
Н	0.07205	0.97928	-1.24862
H	2.33148	1.65806	-0.90052
Н	2.76055	-1.27672	0.02204
Ν	4.31533	0.07323	0.02722
C	4.90972	1.41401	-0.19502
Н	4.66518	1.76860	-1.19938
Н	4.48310	2.11112	0.53476
C	6.41207	1.19251	0.02876
Н	6.90259	2.09572	0.39902
Н	6.89331	0.90761	-0.91325
C	5.32055	-0.88194	0.55799
C	6.46213	0.02388	1.02797
Н	5.63920	-1.54306	-0.25637
Н	4.87054	-1.48848	1.34652
H	7.42174	-0.49848	1.02814
Н	6.26650	0.37946	2.04554