# Electronic Supplementary Information for: Photophysical Deactivation Pathways in Adenine Oligonucleotides

Vincent A. Spata and Spiridoula Matsika<sup>\*</sup> Department of Chemistry Temple University Philadelphia, PA 19122

October 8, 2015

In this document we present additional data supporting the current work. Initially we provide some monomer adenine calculations to better understand the local minima obtained. ADC(2) and NEVPT2 energies and properties not shown in the main paper are shown in sections 2 and 3. Also presented are linear least motion (LLM) pathways calculated with ADC(2) between the various minima obtained to demonstrate the proposed progression of species is barrierless. Helical conformations of the initial geometries are also presented in order to illustrate decay progression is strongly correlated to the environment. IR spectra at the minima are shown in section 6. The geometrical measurements of the six model minima is also presented along with their xyz coordinates.

## 1 Monomer Calculations

We optimized 12 different adenine monomer geometries within the QM/MM environment using ADC(2)/def2-SVP. A table of energies and oscillator strengths is provided as Table S1. Our results reveal two types of monomer minima which are similar to our results from the dimer calculations. We will refer to the geometries here as Local 1 and Local 2 to easily compare the monomer geometries to the dimer geometries. We only obtained one geometry of higher energy with the same character as our Local 1 geometry in the dimer studies. This geometry has an energy of 3.65 eV and is bright with high oscillator strength (0.11). The remaining geometries have energies which range from 2.92 to 3.11 eV and illustrate the same character as our Local 2 conformation. These geometries have an average energy of 2.96 eV and an average oscillator strength of 0.07. All monomer geometries illustrate distortion at the C2 carbon atom. As has been suggested by Lu and coworkers, deformation at this carbon is favored over deformation of the C6 carbon as the amino group is involved in hydrogen bonding.<sup>1</sup> These results confirm the local character of these minima.

<sup>\*</sup>Email address: smatsika@temple.edu

Additionally, we ran single point calculations for the same above geometries excluding the QM/MM environment (in the gas phase) in order to determine the effects of the environment. From these calculations, shown in Table S1 as Local GP, we can conclude the energy differences between Local 1 and Local 2 are clearly from geometry differences and not from the QM/MM environment. QM/MM calculations on adenine monomer in  $(dA)_{10}$ and also in the duplex  $(dA)_{10}(dT)_{10}$  have been undertaken by Lu, Lan, and Thiel.<sup>1</sup> Their results indicate two emissive bands for  $(dA)_{10}$  located around 3.0 eV (mostly  $\pi\pi^*$ ) and 3.6 eV (mixed  $n/\pi\pi^*$ ) with oscillator strengths which are about 0.08-0.10. In the duplex  $(dA)_{10}(dT)_{10}$  they see three main groups of local minima with energies of 2.6, 2.8, and 3.6 eV respectively.

| Minima                  | $S_1$ - $S_0$ | f    |
|-------------------------|---------------|------|
| Local 1 QM/MM           | 3.65          | 0.11 |
| Local 2 $\rm QM/MM$     | 3.06          | 0.06 |
| Local 1 GP              | 3.64          | 0.05 |
| Local 2 GP              | 3.10          | 0.04 |
| Ave Local 2 $\rm QM/MM$ | 2.96          | 0.07 |

Table S1: ADC(2) energies in eV with the accompanying oscillator strengths for QM/MM optimized monomer conformations. Two geometries were chosen to make comparisons between QM/MM and gas-phase values. Also included are the average energy and oscillator strength of 11 additional Local 2 structures obtained from hybrid single points.

## 2 ADC(2) Energies in the Distribution

| Minima            | $S_1$ - $S_0 Gap/eV$ | f          | $\rm S_0/eV$    | $S_1/eV$   |
|-------------------|----------------------|------------|-----------------|------------|
| Local 1           | 3.68(0.11)           | 0.07(0.01) | -0.08(0.15)     | 3.60(0.05) |
| Local 2           | 3.09(0.14)           | 0.06(0.01) | $0.06\ (0.31)1$ | 3.15(0.22) |
| Neutral Excimer   | 3.01 (na)            | 0.04 (na)  | -0.25 (na)      | 2.76 (na)  |
| CT Excimer        | 2.72(0)              | 0.04~(0.0) | 0.34(0.07)      | 3.06(0.07) |
| CT Bonded Excimer | 2.16(0.15)           | 0.04~(0.0) | $1.27 \ (0.23)$ | 3.42(0.27) |
| Bonded Excimer    | 1.22(0.11)           | 0.02~(0.0) | 1.95(0.44)      | 3.17(0.35) |
| CI                |                      |            | 5.08 (na)       | 4.47 (na)  |

Table S2: QM/MM ADC(2)/def2-SVP energies and oscillator strengths for the distribution of minima. Standard deviations are based on the entire data set and presented in parentheses.

The ADC(2) energies obtained from 60 excited state optimizations are provided in Table S2. The corresponding NEVPT2 energies for only one representative geometry of each case are shown in the main paper.

The energy of the previously found  $CI^2$  embedded in the QM/MM environment is also shown. The energies of  $S_0$  and  $S_1$  are not degenerate anymore since this geometry is not

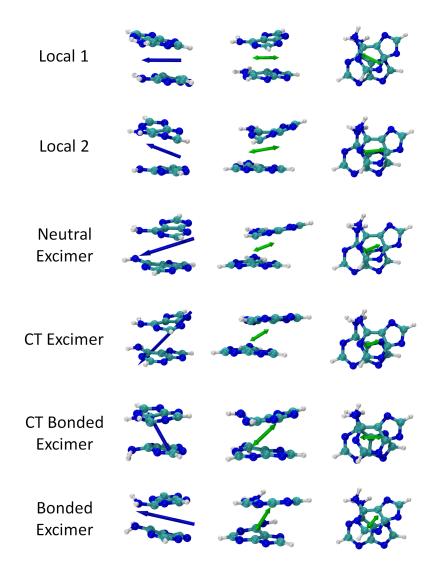



Figure S1: Difference dipole moments and transition moments calculated for 6 model minima with QM/MM CASSCF/def2-SVP.

optimized again. Furthermore, the energy of  $S_0$  is shown here to be higher than the energy of  $S_1$ . This is because of the single reference character of the ADC(2) method. Since we are not interested in the exact energies or any properties here we do not attempt to correct or use a different method to describe the CI.

## **3** QM/MM CASSCF Physical Properties

We have calculated and analyzed the difference dipole moments and transition moments resulting from QM/MM CASSCF calculations to compare to our ADC(2) results (see Figure S1). The results are very similar between the two methods which supports the validity of

the results since both single reference and multireference methods give similar predictions. There is a slight difference in the difference dipole moments of the excimer species which according to the QM/MM CASSCF wavefunction illustrates slight increases in the amount of CT character as evidenced by the change in the orientation of  $\Delta \mu_{10}$  between bases and out-of-plane.

### 4 Decay Between Species

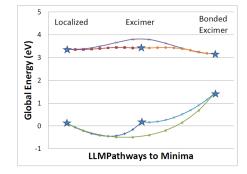



Figure S2: LLM pathways calculated in the gas phase at the ADC(2)/def2-SVP level of theory for three model minima geometries representing our three types of minima.

LLM pathways between the three types of minima were calculated in the gas-phase at the ADC(2)/def2-SVP level to see if there were energy barriers in the progression from one minimum to another. The results reveal there are no or small barriers in progression from Local excitations to Excimers or from Excimers to Bonded Excimers. The progression from Local excitations to Bonded Excimers illustrates that there may be a barrier with a height of about 0.5 eV. Direct decay from the local minima to the bonded excimers seems less likely than stepwise decay through the excimers.

## 5 Correlation of Decay to Franck-Condon Helical Conformation

Figure S3 shows the rise and twist values for the starting conformations of the different minima obtained from free optimizations on the excited state surfaces. We find the minima we have obtained illustrate correlation to the Franck-Condon helical conformation. Five different types of minima are illustrated. Local 1 and Neutral Excimer minima are formed from starting conformations of large twist, Local 2 conformations are formed within the largest range of helical conformation, CT excimers are formed from geometries just below the average of the MD distribution, and the formation of Bonded Excimers are correlated to Franck-Condon structures which exhibit low rise values.

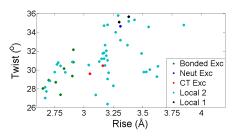



Figure S3: Rise and twist of the starting conformations of 56 excited states optimizations. The minima obtained are color coordinated in the plot to illustrate the initial conformations from the original MD distribution.

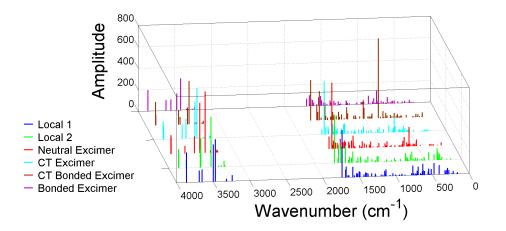



Figure S4: IR spectra obtained at the  $S_1$  minima.

#### 6 IR spectroscopy

A very attractive way to distinguish experimentally between the minima we have predicted is by using an IR probe in a time resolved experiment. The IR spectra obtained at the six representative minima are shown in Figure S4. It is seen there that the spectra have differences that could be used as a signature.

The differences evidenced in the normal modes between species are relevant to differences in the geometry. The Local 1 minimum spectrum exhibits modes characteristic of motions around C2' in the 3' ring while the Local 2 spectrum has different modes which describe motions around C2 in the 5' ring. The excimers and bonded excimers illustrate differences in spectra based on modes present which are characteristic of motion of the amino groups and heavy atom modes in the rings. In addition, the neutral and CT excimers exhibit frequencies which are characteristic of modes around C2 in the 5' ring. The signature of the CT bonded excimer is a massively large peak at 818 cm<sup>-1</sup> which is due to pyramidalization at the C6 carbon. The bonded excimer spectrum illustrates peaks of much smaller amplitudes compared to the other minima.

#### 7 Geometries

In this section we present images illustrating the bond lengths and bond length changes of 6 model minima compared to gas-phase MP2/cc-PVDZ optimized adenine. Changes between ADC(2) minimum geometries and the MP2 ground state minima are color coded for easier analysis. Blue values illustrate increased bond lengths. Red values indicate a decrease in bond length. Bold values are changes in the bond lengths greater than 0.03 Å while underlined bolded values are changes in bond lengths greater than 0.05 Å. At the end of the section we include the xyz coordinates of the 6 model minima.

#### 7.1 Geometry Measurements

The figures provided below illustrate the geometry measurements and changes of the minima presented in this study (see Figures S6 to S11).

The Localized minima illustrate pyramidalization of the C2 carbon with accompanying deformation in the 6-membered rings and shortening of the C6N10 bond with the amino Nitrogen. For Local 1 the excited state character is localized on the 3' adenine and for Local 2 the excited state is local to the 5' adenine.

The Excimers exhibit distortion in both 5' and 3' rings including a symmetric stretch in both rings of the C6N10 bond with the amino Nitrogen. In the Excimer geometries there is increased deformation near C2 in the 5' ring which may illustrate a progression from a 5' Local 2 geometry to Neutral or CT excimers is likely.

The Bonded Excimers illustrate symmetric changes in bond lengths between the 5' and 3' rings although for the two different types of bonded excimers the changes are different. Both Bonded Excimer structures illustrate a simultaneous symmetric pyramidalization around the C6 carbons. In the CT Bonded Excimer geometry the 5' C6N10 bond shortens and 3' C6N10 bond stretches. The Bonded Excimer geometry illustrates stretching of C6N10 bonds in both rings.

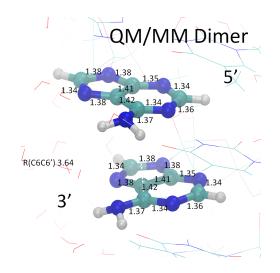



Figure S5: Geometry measurements of the "QM/MM dimer" which is optimized originally in the gas-phase with MP2/cc-PVDZ.

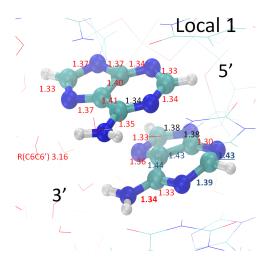



Figure S6: Geometry measurements of the Local 1 minimum model geometry.

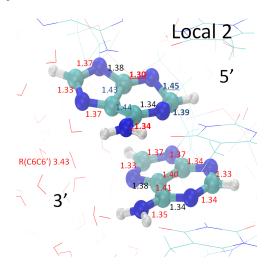



Figure S7: Geometry measurements of the Local 2 minimum model geometry.

#### 7.2 XYZ Coordinates

Provided below in Tables S3 to S8 are the XYZ coordinates for the 6 model minima utilized for calculations and analysis in the study. The geometries presented include the coordinates of the link atom Hydrogens which are unoptimized but are included to ensure the charge of the molecule is 0 in the QM region.

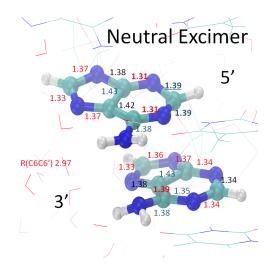



Figure S8: Geometry measurements of the Neutral Excimer minimum model geometry.

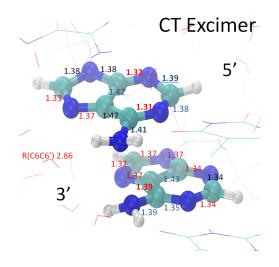



Figure S9: Geometry measurements of the CT Excimer minimum model geometry.

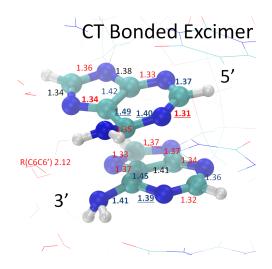



Figure S10: Geometry measurements of the CT Bonded Excimer minimum model geometry.

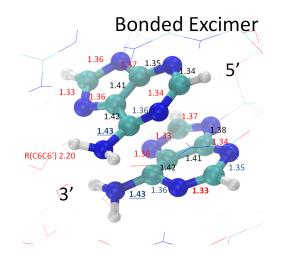



Figure S11: Geometry measurements of the CT Bonded Excimer minimum model geometry.

| Atom | Х          | Y          | Z          |
|------|------------|------------|------------|
| Ν    | 38.2360107 | 25.8400072 | 55.3640155 |
| C    | 36.9890104 | 26.2550074 | 55.7430156 |
| Н    | 36.1890102 | 25.5470072 | 55.9470157 |
| N    | 36.8840103 | 27.5740077 | 55.8140157 |
| С    | 38.1360107 | 28.0300079 | 55.4800156 |
| C    | 38.6410108 | 29.3330082 | 55.2660155 |
| Ν    | 37.9280106 | 30.4560085 | 55.4860156 |
| Η    | 38.3260108 | 31.3300088 | 55.1350155 |
| Η    | 36.9170104 | 30.3830085 | 55.5750156 |
| Ν    | 39.9250112 | 29.4340083 | 54.9070154 |
| C    | 40.6760114 | 28.3360079 | 54.7390154 |
| Н    | 41.7190117 | 28.5180080 | 54.4680153 |
| Ν    | 40.2900113 | 27.0640076 | 54.8340154 |
| С    | 39.0030109 | 26.9640076 | 55.1950155 |
| Ν    | 42.0890118 | 26.7320075 | 57.8060162 |
| C    | 40.8510115 | 26.2900074 | 58.2150163 |
| Η    | 40.6570114 | 25.2540071 | 58.4800164 |
| Ν    | 39.9590112 | 27.2750077 | 58.2670163 |
| С    | 40.5900114 | 28.3660080 | 57.7660162 |
| С    | 40.3180113 | 29.7700084 | 57.9060162 |
| Ν    | 39.1170110 | 30.2020085 | 58.3260164 |
| Η    | 38.9260109 | 31.2090088 | 58.2770163 |
| Η    | 38.3560108 | 29.5440083 | 58.4670164 |
| Ν    | 41.2250116 | 30.6810086 | 57.5760162 |
| C    | 42.3670119 | 30.2590085 | 56.9110160 |
| Η    | 43.1280121 | 31.0210087 | 56.7280159 |
| Ν    | 42.8800120 | 28.9520081 | 57.2030160 |
| C    | 41.9640118 | 28.0720079 | 57.4840161 |
| Н    | 38.5376225 | 24.8955392 | 55.2336977 |
| Н    | 42.8654356 | 26.1498577 | 57.5646862 |

Table S3: XYZ coordinates of the Local 1 model minimum geometry.

| Atom | Х          | Y          | Ζ          |
|------|------------|------------|------------|
| N    | 37.4110105 | 25.7740072 | 54.8880154 |
| C    | 36.1370101 | 26.1990073 | 55.1620155 |
| Н    | 35.2890099 | 25.5170072 | 55.1430155 |
| Ν    | 36.0770101 | 27.4930077 | 55.4490156 |
| C    | 37.3810105 | 27.9190078 | 55.4580156 |
| C    | 37.9580106 | 29.2170082 | 55.2180155 |
| Ν    | 37.1990104 | 30.3160085 | 55.1840155 |
| Η    | 37.6380106 | 31.2230088 | 54.9830154 |
| Н    | 36.2070102 | 30.2790085 | 55.4360156 |
| Ν    | 39.2660110 | 29.3660082 | 54.9890154 |
| С    | 40.0680112 | 28.2470079 | 55.1920155 |
| Η    | 41.1290115 | 28.3780080 | 54.9760154 |
| N    | 39.5190111 | 26.9730076 | 54.7800154 |
| C    | 38.2560107 | 26.8480075 | 55.0830155 |
| N    | 40.9790115 | 26.9950076 | 57.9500163 |
| C    | 39.7170111 | 26.6620075 | 58.3540164 |
| Η    | 39.4170111 | 25.6220072 | 58.4930164 |
| Ν    | 38.9370109 | 27.7170078 | 58.5460164 |
| C    | 39.7380111 | 28.7900081 | 58.2310163 |
| C    | 39.4820111 | 30.1750085 | 58.1370163 |
| N    | 38.2660107 | 30.7170086 | 58.3450164 |
| Н    | 38.1790107 | 31.7320089 | 58.3360164 |
| Н    | 37.5420105 | 30.1660085 | 58.7820165 |
| Ν    | 40.5040114 | 30.9710087 | 57.7800162 |
| C    | 41.6950117 | 30.4390085 | 57.4760161 |
| Η    | 42.4790119 | 31.1510087 | 57.2020160 |
| Ν    | 42.0360118 | 29.1510082 | 57.4650161 |
| C    | 41.0130115 | 28.3640080 | 57.8290162 |
| Н    | 37.7081928 | 24.8327059 | 54.7279942 |
| Н    | 41.6855673 | 26.3514653 | 57.6557297 |

Table S4: XYZ coordinates of the Local 2 model minimum geometry.

| Atom | Х          | Y          | Z          |
|------|------------|------------|------------|
| Ν    | 37.4660105 | 25.8020072 | 54.8100154 |
| C    | 36.1780101 | 26.2270074 | 55.0300154 |
| Η    | 35.3370099 | 25.5400072 | 54.9930154 |
| Ν    | 36.0990101 | 27.5300077 | 55.2740155 |
| C    | 37.4010105 | 27.9670078 | 55.2510155 |
| C    | 38.0200107 | 29.2440082 | 55.2250155 |
| Ν    | 37.3190105 | 30.4140085 | 55.4630156 |
| Η    | 37.7550106 | 31.3020088 | 55.1820155 |
| Η    | 36.2970102 | 30.3850085 | 55.5640156 |
| Ν    | 39.3190110 | 29.3680082 | 55.0650154 |
| C    | 40.1140113 | 28.2340079 | 54.9750154 |
| H    | 41.1410115 | 28.4100080 | 54.6480153 |
| N    | 39.5930111 | 26.9630076 | 54.7690154 |
| C    | 38.2900107 | 26.8990075 | 54.9330154 |
| N    | 40.7690114 | 27.0120076 | 57.6280162 |
| C    | 39.4780111 | 26.6710075 | 57.8870162 |
| H    | 39.1690110 | 25.6350072 | 58.0000163 |
| N    | 38.6710108 | 27.7230078 | 58.0300163 |
| C    | 39.4860111 | 28.8060081 | 57.7970162 |
| C    | 39.2660110 | 30.1780085 | 57.7570162 |
| N    | 38.0060107 | 30.7430086 | 57.7690162 |
| H    | 37.9790107 | 31.7600089 | 57.9040162 |
| H    | 37.2590105 | 30.2120085 | 58.2090163 |
| N    | 40.3230113 | 31.0100087 | 57.6070162 |
| C    | 41.5430117 | 30.4800085 | 57.4610161 |
| H    | 42.3690119 | 31.1920087 | 57.3960161 |
| N    | 41.8740117 | 29.1850082 | 57.3930161 |
| C    | 40.8100114 | 28.3780080 | 57.4800161 |
| H    | 37.7724247 | 24.8613089 | 54.6645189 |
| Н    | 41.4851929 | 26.3643538 | 57.3680141 |

Table S5: XYZ coordinates of the Neutral Excimer model minimum geometry.

| Atom | Х          | Y          | Ζ          |
|------|------------|------------|------------|
| Ν    | 39.0510110 | 25.7460072 | 54.5410153 |
| C    | 37.7720106 | 25.9560073 | 55.0080154 |
| Н    | 37.0700104 | 25.1390071 | 55.1620155 |
| Ν    | 37.5180105 | 27.2430076 | 55.2170155 |
| С    | 38.6850109 | 27.8880078 | 54.9190154 |
| C    | 39.0640110 | 29.2540082 | 54.8020154 |
| Ν    | 38.2040107 | 30.2990085 | 55.1840155 |
| Η    | 38.4310108 | 31.2190088 | 54.7810154 |
| Η    | 37.2070104 | 30.0820084 | 55.2500155 |
| Ν    | 40.2870113 | 29.5730083 | 54.4560153 |
| C    | 41.2290116 | 28.5870080 | 54.2530152 |
| Η    | 42.1850118 | 28.9220081 | 53.8420151 |
| Ν    | 40.9290115 | 27.2330076 | 54.1480152 |
| C    | 39.6810111 | 26.9690076 | 54.4840153 |
| Ν    | 42.2770119 | 27.3740077 | 56.9840160 |
| C    | 41.0680115 | 26.8450075 | 57.3380161 |
| Η    | 40.9360115 | 25.7780072 | 57.5090161 |
| Ν    | 40.1170113 | 27.7560078 | 57.4820161 |
| C    | 40.7360114 | 28.9430081 | 57.1910160 |
| C    | 40.3080113 | 30.2670085 | 57.1660160 |
| Ν    | 38.9820109 | 30.6450086 | 57.3070161 |
| Η    | 38.8080109 | 31.6460089 | 57.4560161 |
| Η    | 38.3400108 | 29.9950084 | 57.7810162 |
| Ν    | 41.2050116 | 31.2480088 | 56.9400160 |
| C    | 42.4840119 | 30.9180087 | 56.7310159 |
| H    | 43.1800121 | 31.7530089 | 56.6080159 |
| Ν    | 43.0120121 | 29.6900083 | 56.6740159 |
| C    | 42.1000118 | 28.7260081 | 56.8240159 |
| Н    | 39.4950166 | 24.8714302 | 54.3462170 |
| Н    | 43.1022665 | 26.8359443 | 56.8125083 |

Table S6: XYZ coordinates of the CT Excimer model minimum geometry.

| Atom | Х          | Y          | Ζ          |
|------|------------|------------|------------|
| Ν    | 40.4300113 | 29.8800084 | 53.1020149 |
| C    | 39.2310110 | 29.9760084 | 53.7370151 |
| H    | 38.6360108 | 29.1020082 | 53.9970151 |
| N    | 38.8620109 | 31.2450088 | 53.9660151 |
| C    | 39.8780112 | 31.9870090 | 53.4980150 |
| С    | 40.0590112 | 33.4670094 | 53.3930150 |
| Ν    | 38.9280109 | 34.1960096 | 53.2430149 |
| Н    | 39.0390110 | 35.1720099 | 52.9410149 |
| Н    | 38.1520107 | 33.9910095 | 53.8840151 |
| Ν    | 41.0940115 | 33.8220095 | 52.5220147 |
| C    | 41.9340118 | 32.9400092 | 52.0500146 |
| Н    | 42.7490120 | 33.3330094 | 51.4340144 |
| Ν    | 41.9150118 | 31.5720089 | 52.1740146 |
| С    | 40.8710115 | 31.1680087 | 52.8920148 |
| Ν    | 43.2600121 | 31.4000088 | 55.0020154 |
| С    | 42.2690119 | 30.7330086 | 55.6720156 |
| Η    | 42.3460119 | 29.6800083 | 55.9230157 |
| Ν    | 41.2260116 | 31.5150088 | 55.9340157 |
| С    | 41.5580117 | 32.7360092 | 55.4060155 |
| C    | 40.8600115 | 33.9960095 | 55.2830155 |
| Ν    | 39.7050111 | 34.2730096 | 56.0450157 |
| Η    | 39.6460111 | 35.2950099 | 56.1450157 |
| Η    | 39.7810112 | 33.8590095 | 56.9820160 |
| Ν    | 41.6650117 | 35.0800098 | 54.9730154 |
| C    | 42.8830120 | 34.8900098 | 54.5070153 |
| Η    | 43.4530122 | 35.7830100 | 54.2320152 |
| N    | 43.5600122 | 33.7200095 | 54.3540152 |
| C    | 42.8520120 | 32.6960092 | 54.8450154 |
| Н    | 40.8565593 | 29.0362578 | 52.7762631 |
| Н    | 44.1022602 | 31.0294196 | 54.6105385 |

Table S7: XYZ coordinates of the CT Bonded Excimer model minimum geometry.

| Atom | Х          | Y          | Ζ          |
|------|------------|------------|------------|
| Ν    | 40.9410115 | 29.6720083 | 52.5440147 |
| C    | 39.6580111 | 29.7260083 | 53.0040149 |
| Η    | 39.0690110 | 28.8350081 | 53.1950149 |
| Ν    | 39.2240110 | 30.9740087 | 53.1550149 |
| C    | 40.2750113 | 31.7500089 | 52.7650148 |
| C    | 40.4780114 | 33.1540093 | 52.7450148 |
| Ν    | 39.3480110 | 34.0310095 | 52.8270148 |
| Н    | 39.5690111 | 35.0070098 | 52.5850148 |
| Н    | 38.4310108 | 33.6990095 | 52.5000147 |
| Ν    | 41.5760117 | 33.6080094 | 52.0910146 |
| C    | 42.5530119 | 32.7480092 | 51.7880145 |
| Η    | 43.4480122 | 33.2010093 | 51.3550144 |
| N    | 42.5580119 | 31.4100088 | 51.9110146 |
| C    | 41.3810116 | 30.9650087 | 52.3920147 |
| Ν    | 43.4050122 | 31.2830088 | 55.2230155 |
| C    | 42.3220119 | 30.5360086 | 55.5960156 |
| Η    | 42.3990119 | 29.4810083 | 55.8530157 |
| N    | 41.1970116 | 31.2490088 | 55.6170156 |
| C    | 41.5710117 | 32.5060091 | 55.2510155 |
| C    | 40.8630115 | 33.6690094 | 54.8440154 |
| N    | 39.4490111 | 33.8690095 | 54.9780154 |
| H    | 39.1530110 | 34.7360097 | 55.4320155 |
| H    | 38.8430109 | 33.0550093 | 55.1340155 |
| N    | 41.5570117 | 34.8370098 | 54.7640154 |
| C    | 42.8870120 | 34.7740098 | 54.6730153 |
| H    | 43.4100122 | 35.7250100 | 54.5550153 |
| N    | 43.6630122 | 33.6710094 | 54.7140153 |
| C    | 42.9600121 | 32.5680091 | 55.0080154 |
| Н    | 41.4432536 | 28.8456957 | 52.2891958 |
| Н    | 44.3289339 | 30.9352819 | 55.0635569 |

Table S8: XYZ coordinates of the Bonded Excimer model minimum geometry.

## References

- [1] Lu, Y.; Lan, Z.; Thiel, W. Monomeric adenine decay dynamics influenced by the DNA environment. Journal of computational chemistry **2012**, 1225–1235.
- [2] Spata, V. A.; Matsika, S. Bonded excimer formation in π-stacked 9-methyladenine dimers. J. Phys. Chem. A 2013, 117, 8718–8728.