Supporting Information

Synthesis,StructureandDehydrogenationMechanism of Calcium Amidoborane Hydrazinates

Zhao Li ^{ab}, Teng He* ^a, Guotao Wu ^a, Weidong Chen ^{ab}, Yongshen Chua

^{*d*}, Jianping Guo^{*ab*}, Dong Xie^{*a*}, Xiaohua Ju^{*a*}, Ping Chen*^{*a,c*}

^{*a*} Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China

^b University of the Chinese Academy of Sciences, Beijing 100049.

^c State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese

Academy of Sciences, 457, Zhongshan Road, Dalian, 116023, China

^d School of Chemical Sciences, University Sains Malaysia, 11800, Pulau

Pinang, Malaysia

* Corresponding author Tel. / fax: +86 411 84379583 +86 411 84379905 E-mail address: heteng@dicp.ac.cn (T. He) pchen@dicp.ac.cn (P. Chen)

Fig. S1. XRD patterns of Ca(NH₂BH₃)₂, Ca(NH₂BH₃)₂-1/2N₂H₄, Ca(NH₂BH₃)₂-N₂H₄, Ca(NH₂BH₃)₂-2N₂H₄, Ca(NH₂BH₃)₂-3N₂H₄.

Fig. S2. FTIR spectra of Ca(NH₂BH₃)₂, Ca(NH₂BH₃)₂-1/2N₂H₄, Ca(NH₂BH₃)₂-N₂H₄, Ca(NH₂BH₃)₂·2N₂H₄.

Fig. S3. ¹¹B NMR of Ca(NH₂BH₃)₂, Ca(NH₂BH₃)₂-1/2N₂H₄, Ca(NH₂BH₃)₂-N₂H₄, Ca(NH₂BH₃) $_2$ ·2N₂H₄.

Fig. S4. MS profiles of the gaseous products of $Ca(NH_2BH_3)_2$, $Ca(NH_2BH_3)_2$ -1/2N₂H₄, $Ca(NH_2BH_3)_2$ -N₂H₄, $Ca(NH_2BH_3)_2$ -2N₂H₄ after heating at 150°C.

Fig. S5. FTIR spectra of Ca(NH₂BH₃)₂- $1/2N_2H_4$ after heating at 80°C, 100°C, 150°C, 250°C and room temperature.

Fig. S6. TPD profiles of hydrogen desorption from $Ca(NH_2BH_3)_2-1/2N_2H_4$ at ramping rates of 2, 4, 6, and 8 K/ min, respectively.

Fig. S7. TPD profiles of hydrogen desorption from $Ca(NH_2BH_3)_2$ at ramping rates of 2, 4, 6, and 8 K/ min, respectively.

Fig. S8. FTIR spectra of $Ca(NH_2BH_3)_2-1/2N_2H_4$, $Ca(NH_2BD_3)_2-1/2N_2H_4$ and $Ca(ND_2BH_3)_2-1/2N_2H_4$.

Fig. S9. XRD of $Ca(NH_2BH_3)_2 - 1/2N_2H_4$, $Ca(NH_2BD_3)_2 - 1/2N_2H_4$ and $Ca(ND_2BH_3)_2 - 1/2N_2H_4$.