Supporting Information

Flexible Ag-C₆₀ Nano-Biosensors based on Surface Plasmon Coupled Emission for Clinical and Forensic Applications

Pradyumna Mulpur[†], Sairam Yadavilli[†], Praharsha Mulpur[§], Neeharika Kondiparthi[§], Bishwambhar Sengupta^{‡¶}, Apparao M. Rao^{‡¶}, Ramakrishna Podila^{‡¶*} and Venkataramaniah Kamisetti^{†*}

[†] Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam 515134, India

[§]Department of Clinical Microbiology, Sunshine Hospitals, Secunderabad, 500003, India [‡]Department of Physics and Astronomy and [¶]Clemson Nanomaterials Center, COMSET, Clemson University, Clemson, South Carolina 29634, United States

*Corresponding Authors:

Prof. Venkataramaniah Kamisetti Email: kvenkataramaniah@sssihl.edu.in Telephone: +91 9490474571

Dr. Ramakrishna Podila Email: rpodila@g.clemson.edu Telephone: (864) 656 – 4447 Fax: (864) 656 – 0805 **Mobile phone based sensing of SPCE signals:** Encouraged by the high selectivity and sensitivity exhibited by our GLAG/FLAG-C₆₀ platforms for sensing bacteria (cf. Fig. 4) and sperm (cf. Fig. 6), we explored the possibility of sensing them in RLS setting using the camera on iPhone[®] to record the SPCE signals through SpectraSnapp[®] application (developed by the American Physical Society and available freely on the iTunes[®] store). In our setup, an iPhone 6 (which served as the detector) and a 1 cm² piece of a compact disc (which served as the diffraction grating) were assembled into a smartphone-based biosensor using black chart paper (which cut out ambient light). For the study, we employed GLAG/FLAG-C₆₀ substrates coated with 10 μ M concentration of RhB, which was excited with a green laser (532 nm). By a simple point-and-shoot technique, we captured the SPCE orange RhB spectral band (Fig. 6) at 580 nm. It is important to note that the orange band captured in the image moves from a light orange to red color gradient, which corresponds to RhB emission profile from ~540-620 nm that can be seen in Figs. 3 and 5.

Figure S1: An iPhone 6 screen-shot representing: (a) the recorded SPCE spectral emission from micro-molar concentration of RhB on a FLAG-C₆₀ substrate that corresponds to SPCE signal @580 nm and (b) a green spectral band corresponding to a 532 nm excitation source in the absence of RhB fluorophore on the FLAG-C₆₀ substrate.