The Influence of Large-Amplitude Librational Motion on the Hydrogen Bond Energy of Alcohol-Water Complexes

^aJ. Andersen, ^bJ. Heimdal, and ^aR. Wugt Larsen*

^aDepartment of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kgs. Lyngby, Denmark

^bMAX-IV Laboratory, Lund University, P. O. Box 118, 22100 Lund, Sweden

Supporting Information

^{*}Corresponding Author: rewl@kemi.dtu.dk $% \mathcal{C} = \mathcal{C} =$

Table 1: The predicted absolute electronic energy E_{abs} (Hartrees) and dissociation energies D_e (kJ/mol) for mixed water/methanol (wm, most stable) and methanol/water (mw, less stable) complexes at the B3LYP, B3LYP-D3 and CCSD(T) levels based on fully geometry optimized monomers at the B3LYP and B3LYP-D3 levels employing the aug-cc-pVTZ basis set (aTZ) together with the difference of electronic dissociation energy between the two different conformers ΔE_e (kJ/mol).

	B3LYP/aTZ (geo) ^a		B3LYP-CP/aT	Z (geo) ^{a,b}	B3LYP-CP/aTZ (geo) ^{a,b}			
	B3LYP/aTZ (el)		B3LYP/aTZ (e	l)	CCSD(T)/aTZ (el)			
	E_{abs}	D_e	E_{abs}	D_e	E_{abs}	D_e		
W	-76.4661966				-76.3423052			
m	-115.7767608				-115.5623521			
mw	-192.2499676	18.40	-192.2498672	18.14	-191.9130798	22.11		
wm	-192.2507980	20.58	-192.2506884	20.29	-191.9140428	24.64		
ΔE_e		2.18		2.16		2.53		
	B3LYP-D3/aTZ (geo) ^a		B3LYP-D3-CP	$/\mathrm{aTZ}~(\mathrm{geo})^\mathrm{a}$	$^{b}B3LYP-D3-CP/aTZ (geo)^{a,b}$			
	B3LYP-D3/aTZ (el)		B3LYP-D3/aT2	Z (el)	CCSD(T)/aTZ (el)			
	E_{abs}	D_e	E_{abs}	D_e	E_{abs}	D_e		
W	-76.4662050				-76.3423045			
m	-115.7778700				-115.5623487			
mw	-192.2525084	22.14	-192.2524015	21.86	-191.9131025	22.18		
wm	-192.2536639	25.18	-192.2535506	24.88	-191.9141454	24.92		
ΔE_e		3.03		3.02		2.74		

^a RMS force criterion set to 10^{-6} (atomic units) for all geometry optimizations. ^b CP = Counterpoise Correction applied.

Table 2: The predicted absolute electronic energy E_{abs} (Hartrees) and dissociation energies D_e (kJ/mol) for mixed
water/methanol (wm, most stable) and methanol/water (mw, less stable) complexes at the MP2, $CCSD(T)$ and $CCSD(T)$ -
F12 levels based on fully geometry optimized monomers at the MP2 level employing the aug-cc-pVTZ (aTZ) and aug-cc-
pVQZ (aQZ) basis sets together with the difference of electronic dissociation energy between the two different conformers
$\Delta E_e \; ({ m kJ/mol}).$

						$^{\rm aQZ} ({\rm geo})^{{\rm a},{\rm b}}$	-F12/aQZ (el)	D_e	865	.932	375 21.51	574 24.20	2.68
						MP2-CP/	CCSD(T)	E_{abs}	-76.42224	-115.7054	-192.1359	-192.1369	
$(\text{geo})^{a,b}$ aTZ (el) D_e			21.98	24.62	2.65	$(geo)^{a,b}$	aTZ (el)	D_e			22.01	24.66	2.65
MP2-CP/aTZ (CCSD(T)-F12/ E _{abs}	-76.4094478	-115.6872606	-192.1050794	-192.1060874		MP2-CP/aQZ (CCSD(T)-F12/	E_{abs}	-76.40946628	-115.68728478	-192.10513507	-192.10614383	
$Z (geo)^{a,b}$ Z (el) D_e			22.19	25.01	2.82	Z (geo) ^{a,b}	Z (el)	D_e			21.95	24.74	2.82
MP2-CP/aTZ CCSD(T)/aT E _{abs}	-76.3423045	-115.5623571	-191.9131145	-191.9141887		MP2-CP/aQZ	CCSD(T)/aT	E_{abs}	-76.3423119	-115.5623083	-191.9130617	-191.9141373	
$(\mathrm{geo})^{\mathrm{a,b}}$ D_e			19.83	22.71	2.88	$(geo)^{a,b}$		D_e			20.45	23.36	2.91
MP2-CP/aTZ MP2/aTZ (el) E _{abs}			-191.8655547	-191.8666499		MP2-CP/aQZ	MP2/aQZ (el)	E_{abs}			-191.9228192	-191.9239285	
$O)^{a}$ D_{e}			21.96	25.06	3.10	о) ^а		D_e			21.47	24.54	3.06
MP2/aTZ (ge MP2/aTZ (el) E _{abs}	-76.3289923	-115.5290078	-191.8663630	-191.8675446		MP2/aQZ (ge	MP2/aQZ (el	E_{abs}	-76.3519184	-115.5631124	-191.9232089	-191.9243758	
	Μ	ш	тw	МШ	ΔE_e				Μ	Ш	тw	шм	ΔE_e

 $^{\rm a}$ RMS force criterion set to 10^{-6} (atomic units) for all geometry optimizations. $^{\rm b}$ CP = Counterpoise Correction applied.

Table 3: The predicted absolute electronic energy E_{abs} (Hartrees) and dissociation energies D_e (kJ/mol) for mixed water/t-butyl alcohol (wt, most stable) and t-butyl alcohol/water (tw, less stable) complexes at the B3LYP, B3LYP-D3 and CCSD(T) levels based on fully geometry optimized monomers at the B3LYP and B3LYP-D3 levels employing the aug-cc-pVTZ basis set (aTZ) together with the difference of electronic dissociation energy between the two different conformers ΔE_e (kJ/mol).

	B3LYP/aTZ (geo) ^a		B3LYP-CP/aT	Z (geo) ^{a,b}	B3LYP-CP/aTZ (geo) ^{a,b}			
	B3LYP/aTZ (e	el)	B3LYP/aTZ (e	l)	CCSD(T)/aTZ (el)			
	E_{abs}	D_e	E_{abs}	D_e	E_{abs}	D_e		
W	-76.4661966				-76.3423052			
\mathbf{t}	-233.7744275				-233.3066355			
tw	-310.2468571	16.36	-310.2467263	16.02	-309.6576423	22.85		
wt	-310.2489775	21.93	-310.2488297	21.54	-309.6599097	28.80		
ΔE_e		5.57		5.52		5.95		
	B3LYP-D3/aT	$^{\circ}Z (geo)^{a}$	B3LYP-D3-CP	$/\mathrm{aTZ}~(\mathrm{geo})^\mathrm{a}$	^b B3LYP-D3-CP/	^b B3LYP-D3-CP/aTZ (geo) ^{a,b}		
	B3LYP-D3/aT	$^{\circ}Z$ (el)	B3LYP-D3/aT2	Z (el)	CCSD(T)/aTZ (el)			
	E_{abs}	D_e	E_{abs}	D_e	E_{abs}	D_e		
W	-76.4662050				-76.3423045			
\mathbf{t}	-233.7849828				-233.3066616			
tw	-310.2596343	22.18	-310.2594915	21.80	-309.6578720	23.38		
wt	-310.2628379	30.59	-310.2626699	30.15	-309.6604021	30.03		
ΔE_e		8.41		8.34		6.64		

^a RMS force criterion set to 10^{-6} (atomic units) for all geometry optimizations.

^b CP = Counterpoise Correction applied.

Table 4: The predicted absolute electronic energy E_{abs} (Hartrees) and dissociation energies D_e (kJ/mol) for mixed water/t-butyl alcohol (wt, most stable) and t-butyl alcohol/water (tw, less stable) complexes at the MP2, CCSD(T) and CCSD(T)-F12 levels based on fully geometry optimized monomers at the MP2 level employing the aug-cc-pVTZ (aTZ) basis set together with the difference of electronic dissociation energy between the two different conformers ΔE_e (kJ/mol).

	$MP2/aTZ (geo)^a$		MP2-CP/aTZ (geo) ^{a,b}		MP2-CP/aTZ	(geo) ^{a,b}	MP2/aTZ (geo) ^{a,b}		
	MP2/aTZ (el)		MP2/aTZ (el)		CCSD(T)/aTZ	Z (el)	CCSD(T)-F12/aTZ (el)		
	E_{abs}	D_e	E_{abs}	D_e	E_{abs}	D_e	E_{abs}	D_e	
W	-76.3289923				-76.3423045		-76.4094478		
\mathbf{t}	-233.2210850				-233.3066372		-233.6062126		
tw	-309.5589091	23.19	-309.5578621	20.44	-309.6578587	23.41	-310.0243343	22.77	
wt	-309.5615378	30.09	-309.5602656	26.75	-309.6603926	30.06	-310.0268163	29.29	
ΔE_e		6.90		6.31		6.65		6.52	

 $^{\rm a}$ RMS force criterion set to 10^{-6} (atomic units) for all geometry optimizations.

^b CP = Counterpoise Correction applied.

Table 5: The predicted harmonic vibrational zero-point energies (ZPE) for mixed isotopic complexes of water (w) with methanol (m) and t-butyl alcohol (t) at the MP2/aug-cc-pVTZ level.

	H ₂ O–CH ₃ OH	CH ₃ OH–H ₂ O	H ₂ O–CD ₃ OD	CD ₃ OD-H ₂ O	D ₂ O–CH ₃ OH	CH ₃ OH–D ₂ O	
ZPE_m	136	6.18	101	1.83	136.18		
ZPE_w	56	.21	56	.21	40.89		
ZPE	200.19	198.98	165.56	163.94	183.32	182.92	
ΔZPE	7.80	6.59	7.52	5.90	6.25	5.85	
	H ₂ O-	$\rm C(CH_3)_3OH-$	H_2O-	$C(CD_3)_3OD-$	D_2O-	$\rm C(CH_3)_3OH-$	
_	$C(CH_3)_3OH$	H_2O	$C(CD_3)_3OD$	H_2O	$C(CH_3)_3OH$	D_2O	
ZPE_t	358.61		273	3.10	358.61		
ZPE_w	56.21		56	.21	40.89		
ZPE	423.22	421.16	337.02	334.75	405.93	404.81	
ΔZPE	8.40	6.34	8.06	5.74	6.77	5.57	