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Supplementary text

Details of the energy model for the folded state

The charging energy, the first term in equation (4), is calculated as follows. The
intrinsic PKa 1 of residue L P (D), is the PKa of that residue in the studied protein, considering
no interaction with other ionizable residues. Let ©n be an uncharged state with the protein

having all its residues in the neutral state, including residue I, and Peisa charged state differing

P

from “n in that residue { is in its charged state. At a given solution pH, the charging energy

G . ..
Al hg of residue L is:

AG () =AG, _, =y(DRT(In10)(pH - pK (D)) (51)

where ¥(i) is +1 for positively charged residues, and -1 for negatively charged ones. On the

other hand, the ionization of residue I can be related to that of the appropiate model compound?

M

using the thermodynamic cycle in figure S1, where "'n and M, represent, respectively, states

where the studied residue i has been separated from the protein to become the model compound

int
in the neutral or charged state. Therefore, the PK'a’ can be expressed as a function of the PKo of

the model compounds:
AGM —P + AGP ->M
n n

int ;. d, . , c ¢
pK (D) = pK™3 (1) - v (i) R 10 (52)

AGy _p AGp oy .
To calculate ¢ cand n~"n we assume the electrostatic effects are the relevant ones and

GPn GMn Mc Pc . . . . Kint
calculate them from “ele, “ele, “ele, “ele. The main non-electrostatic contributions to P**

mod
which cannot be ignored, are represented through the experimental PK"a" values and the

permittivity constants of protein and solvent. After reorganization:

MGy _p +AGp _y = (GPC GP") - (GMC GM") (53)

ele ™ Zele ele ™ Zele

According to Antosiewic et al.3:

- 1 Vo
GZZ - G:fé = Z (Qi¢i - qi¢i) - EZ (qi¢i - ql-q.’)i)

i€EA i€EB (S4)
where 4 represents all the atoms in the protein (including those of the studied residue, which

P

form subset B); ¢ represents the electrostatic potential at atom © in state * », and Z represents

P

the same in state © ¢; 9i represent the point charges in state  » and 7 those in state P, Similarly

for the model residue calculations (based on ref. 3, eq. 8):

. 1 "
GZZ - GZZ = Z (qi¢i - qi¢i) - EZ (qi¢i - qi¢i) (85)

i€B i€EB



In our approach, differing from ref. 3, the whole model residue is the ionizable group, since the

charge of the proton may be distributed among all the atoms of the residue; therefore, B

represents all the atoms of the model residue. i and 9 correspond to state Mn; and i and %
correspond to state M.

The effective interaction energy, the second term of equation (4), includes all
electrostatic interactions among the charged ionizable residues in the protein. Again, following
ref. 3, and since the partial charges of the neutral and the charged state for each residue are in

the same atomic points:

AGele,int(i'j) = Z (qx - qx) ((pl - ¢l) (S6)

XEres;
J

where X is an index of the atoms in one of the interacting residues (residue J), and 9= is the

charge at atom ¥ in the residue charged state, and 9x the charge in the residue neutral state. ¢;

represents the electrostatic potential created by residue ¢ charged state at the given atom
positions, and ¢ represents the potential created by residue i neutral state. As in ref. 3, we

assume AGete,int(b) = AG o i, (1) Though this is true in the Poisson-Boltzmann model, it is

only an approximation in our model, because i and Pi are not the potential energy at the given
atom positions, but the potential energy due to residue i, which misses the effect of residue J/
charges at those atom positions both directly and indirectly through the induced charges in the

dielectric border. To deal with a single number in the calculations we only consider values of

AGeie it (b)) with i < (that is, residue I is first in the protein sequence).

The electrostatic interaction energy of a residue ¢ in the folded state is the sum of the

interaction energies of that residue with any other ionizable residue J:

AGele,int(i) = Z AGele,int(i'j) (57)
j#LjER

For a given protonation configuration P, the interaction energy between two residues i, J is

POPUIAG e ime (1] ), and then the residue interaction energy is:

BGoteiuiD) = Y POPIAGseine (i) (58)

j#ijER
and for the Boltzmann-weighted average of the protonation configurations:
G = Y WE) Y POPGIAG 10, (0) (59)

D j*ijER
where (D) is the weight given to configuration p. Equation (S9) can be rearranged to give:
Ao = Y\ AGeein i) Y W(BPHP)) (510)

j*ijER p



ZW(ﬁ)p(i)p(j)
Since P(DP() is 1 only if both i and J are charged (0 otherwise), the term » is the
Boltzmann-weighted fraction of protonation configurations P that have both i and J charged.
GF

This fraction can be obtained from the Metropolis Monte Carlo sampling used to calculate ~ele.

Renaming this fraction as *¥(i./), the interaction energy for residue i can be written as:

G = Y X(6)AGe (b)) (s11)
j#ij€R

Calculation of electrostatic potentials and interaction energies in the folded state

For each ionizable residue in each protein variant four potential maps corresponding to
the © n, Mn, M and Pe states in figure S1 have to be calculated. These potential maps were
obtained solving the Poisson-Boltzmann equation using finite differences as implemented in
Delphi (see parameters in Table S4). The relative coordinates of the model residue are the same
as those when embedded in the protein. To avoid artifacts in the calculations (see discussion on
self-energy in ref. 2) we follow the approximation of using the same conformations for the

M, and M ¢, and for the protein in states P n, P, Using the same solvent-

model residue in states
molecule boundary in each state (charged or neutral) also simplifies calculations, as explained

above when dealing for radii and charges of atoms in the folded state.

For the Pn and e states the processed folded structures described above were used.
Then, the difference between the neutral and charged states in the thermodynamic cycle were

exclusively modeled through the partial charges assigned to the atoms. Since the protein without

M

the model residue in states Mn and Me is the same in both cases, we can ignore it for the

calculations. The charges used to model each state are: for My or Me the partial atomic charges

for the studied residue type in the neutral or charged state, respectively; for Py or Pe: the partial
atomic charges for the studied residue type in the neutral or charged state, respectively. All
other atoms in the protein are assigned null partial charges.

For each protein variant the grid center is that of the parallelepiped containing it, with
the parallelepiped faces parallel to the XY, YZ and XZ planes. Then, we create a cube centered
on that point, so that the protein volume in it occupies, at most, 80% of the grid (see Table S4).
Once the potentials for the four states are obtained, they are introduced in equations (S4) and
(S5) using different sets of charges. For protein states —eq (S4)— i represents the partial

charges corresponding to the neutral state for all atoms in the protein, including the studied

residue; and 9i represents the partial charges corresponding to the charged state only for the

atoms of the studied residue, all the other atoms in the protein being considered in their neutral



state. For model states —eq. (S5)— %i represents the partial charges of the residue atoms in the
neutral state, and 7i those for the charged state. For calculation of AGeie,ine (L)) using eq. (S6), the

calculated potentials are again used, and for 9x and 9x we used the charged state and neutral

state set of atomic charges for residue J.

Sampling of the protonation configurations in the folded state

Each scan has as many Monte Carlo steps as the number of possible transitions (there
are as many moves as ionizable residues, plus the number of strongly coupled groups of
residues, either couples or triplets), effectively varying from one protein to another, since they
will have different numbers of possible transitions. This is similar to the method of Beroza et
al#, though they try all possible transitions in each scan, while we do the same number of
transitions per scan, but the transition is selected randomly each time. Each Monte Carlo step
consists in selecting a transition in the protonation configuration space of the protein and
deciding whether to accept it or to keep the old configuration. Transitions can affect one, two, or
three ionizable residues, and the actual number of residues that change their protonation state is
based on the probabilities in Table S5 (single move probability, double move probability, and
triple_move_probability). When no double or triple transition is present, their probabilities are
set to zero and the other probabilities normalized to add up to 1. For transitions affecting only
one residue, any ionizable residue is eligible. For 2 or 3 residues, the transitions allowed depend
on whether the ionizable residues interact strongly (as explained in ref. 4). Several residues
interact strongly if the only way to change between 2 low energy protonation configurations of
those residues is by flipping the state of several of those residues because intermediate steps
requiring single flips have high energies. Strong interactions hinder a Metropolis sampling that

only uses single-residue transitions. Our method classifies pairs or triplets of residues as

strongly interacting if there are at least 2 protonation configurations, Pa and 51), of those residues
that differ in the protonation state of at least one residue (but not all) and whose difference in
interaction energy is above a threshold as the following equation shows:
|E int(;’a) -E int(ﬁb)| > Ereshold (512)
In the case of triplets, it is besides required that at least a pair of their residues interact strongly.
The energy of the interacting residues is approximated by taking, from eq. (4), only those terms

referring to the affected residues:

Ene(P) = ;p(imam(o + z;, E;Ljp(i)p(j)AGele,mt(i,j) (513)



with R being the set of strongly interacting residues being considered and P is a protonation

configuration for those residues. The value of the Ettreshota parameter and the rest of parameters

used in the Metropolis sampling appear in Table S5.

Graphs and data analysis

Graphs and data analysis, including least-squares regression analysis, were done within

the IPython environment (http://ipython.org) using pandas 0.12 (http://pandas.pydata.org/),

scipy 0.12 (http://scipy.org/scipylib/index.html) and matplotlib 1.3.0 (http://matplotlib.org/).

Effect of the calculated interaction corrections of the ensemble unfolded models on the

predicted stabilizing energies

Under the Simple model the electrostatic folding energy of a protein is:
Goo— G ele,sli]mple (514)
with the folded and unfolded state energies given by equations (3) and (9) respectively.

When considering the unfolded ensemble models (Minimum energy model, Average
energy model and Boltzmann-weighted energy model), it can be seen that the unfolded energy is
the sum of two terms, the first one corresponding to the first term in equation (11), which is the

same as the Simple model unfolded energy, and the second term corresponding to the minimum,

average or Boltzmann-weighted average (depending on the model) of the second term in

equation (12):
U _ U U
Gele - Gele,simple + Gele,int (515)

Based on that, we can express the electrostatic stabilizing energy under those models in
relation to the electrostatic stabilizing energy in the Simple model as

AAG = (GF,mut _ GU,mut) _ (GF,Wt _ GU,Wt) = AAG + (G uwt _ GU,mut) (516)

ele ele ele ele simple ele,int ele,int

u
That second term, which we call AAGele,int, represents the effect of the calculated
unfolded interaction corrections in the predicted stabilizing energies. As shown in table S6,

u
|AAGele,int| when considering the 80

which presents the mean and standard deviation for
mutations in the complete set, these values are in the same order as the stabilizing energies in
the Simple model.

Comments on the precision achieved with the proposed models

Fig. S2 graphically shows how the achieved precision is much higher than the precision
one would obtain using a random model for which the precision would correspond to the actual
ratio of stabilizing mutants in the comparable set (0-23, since 13 out of the 56 mutants are
stabilizing; a similar value of 0-25 would be obtained if the whole set of 80 mutations were

considered). Notice that such low values correspond to the precisions obtained by placing the


http://ipython.org/
http://pandas.pydata.org/
http://scipy.org/scipylib/index.html
http://matplotlib.org/

threshold just at the last point of each graph, since that precision value is just the ratio of
stabilizing mutants. The graphs also show that the models are relatively insensitive to the actual
value for the classifying threshold: slightly moving the threshold line to the left or to the right in
the figures would not significantly worsen the precision obtained by the models. Finally,
because the graphs show the way each model orders the mutants by predicted stability change
(most stabilizing-predicted mutants on the left, less stabilizing-predicted or destabilizing-
predicted mutants on the right), the good behavior of the models is clear, since most

experimentally stable mutants (black dots) appear towards the left part of the graph.
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Supplementary figures and tables

Figure S1. Thermodynamic cycle illustrating the charging of an ionizable residue in a
protein. The example shows Glu36 of the cold shock protein from Bacillus subtilis (PDB code:
Icsp). Only the atoms in that residue have partial charges, and only the partial charges that

. . 5
differ between the neutral and the charged state (in atoms 081, 082, C”) are shown. All other
atoms in the protein have null partial charges. The states in the cycle are: M, (model residue,
neutral: atoms of the ionizable residue are in the neutral form); M, (model residue, charged:

atoms of the ionizable residue are in the charged form); Py (protein with neutral residue: the

whole protein, with all atoms in the residue in the neutral form, and all the other atoms with null

partial charges); P (protein with charged residue: the whole protein, with all atoms in the
residue in their charged form, and all the other atoms with null partial charges). All states in the

cycle have continuous solvent and the same ionic strength.

Figure S2. Precision depending on the threshold chosen for the subset of 56 mutants in the
comparable data set. Experimentally stabilizing mutants are shown in black, non-stabilizing
ones in white. Each dot represents the precision (stabilizing success rate) obtained after placing
the classifying threshold exactly at the predicted stabilizing energy for the given mutant
(predicted energies are represented on the x-axis). AAGgimpie 18 the Simple model (A), AAGpyq 1S
the Mixed reference model (B), and AAG,, is the Native only model (C). Vertical lines indicate

the actual threshold used to calculate the precision of the different models, as shown in Table 2.
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Table S1. Experimental differential folding energies.

Protein Mutant (k ]anoGl -1 Protein Mutant (k ]fnﬁ?' 1
E20K¢ 6.7 E10K" 9.2
E40K¢ 9.3 E10Q" 5.4
E61KY 3.7 DI19K" 13
apoffavodoxin | E2K. 5.4 DI9N® 0.84
D65KY 1.0 E21K" 42
D75K¢ 42 E2IN® 5.9
D126K¢ 42 K28E" 3.3
D150K¢ 1.2 K28Q" 1.3
R3E"* 11.5 KA48E! 0.0
Y15Fe¢ 0.2 K48Q" 04
E46A®© 0.9 E5S7K" 04
R3E"© 42 E57Q" 0.8
Y15Fb-¢ 0.3 K63E! 6.3
E46AP-© 0.5 K63Q" 42
EI12K®! 1.8 KGAE! 6.7
E21K*! 1.1 K64Q" 0.0
H29E" ! 3.2 E67Q" 2.1
E36K® ! 0.8 K70E" 1.7
CspB-Be  Feiekar 2.7 K70Q" 13
ESOK® ! 2.1 SNase | E73K" 8.8
RSGE™ ! 32 E73Q" 2.9
EI12K"f 1.2 E75K" 9.6
E21K>f 0.7 E75Q" 2.9
H29E" T 2.0 D77K" 14.6
E36K" ! 3.3 D77Nb 12.1
E46K> 0.9 K78E" 3.3
ESOK® 1.1 K78Q" 04
RSGED ! -1.0 KS84E! 0.0
E3R*¢ 111 K84Q" 04
EG6L® © 8.8 K97E! 2.5
CspB-Bs  espoe 32 K97Q" 1.7
EG6LY ¢ 6.0 E122K" 11.3
K6E: 22 E122Q" 6.7
K6Q¢ 1.1 HI24E" 0.8
K27Q¢ 8.0 H124Q" 25
K29Q° ¢ 6.2 KI127E" 0.0
ubiquitin | K29Ne- 7.0 K127Q" 0.0
R42EE 6.8 K133Q" 2.1
H63Q¢ 23 E135Q" 2.9
H68E: 32
R72Q¢ 1.4

a1=0.1 M. ®I=2.1 M. ¢ Energy of mutants K29Q and K29N are swapped from those
in the original article because fig. 2 of that article and other values in the table in that
article (C1/2) show those values were mistakenly swapped. ¢ From ref. 5. ¢ From ref.
6. 'From ref. 7. ¢From ref. 8. " From ref. 9.



mod
Table S2 Ionizable residues, their PK™q (from ref. 10), and their protonation states with the

corresponding Amber residue type and the point charge changes needed to obtain the non-

standard protonation variants.

I:;lifﬂlbelf megd Protonation variants and their point charges
With H* 0 ASP, adding 0.1 to €?, and 0.45 to 0°! and 0%,
Asp 4.0
Without H? -1 |ASP
With H® 0 GLU, adding 0.1 to CS, and 0.45 to 0" and 0.
Glu 4.4
Without H -1 |GLU
In a disulfide bond |0 CYX, point charges specified by Amber force field.
ith H' 0 CYS
Cys 9.5 Wit
. H}/ .
Without H 1 CYS, null ch.arge in 7, andythe rest of charge until a
total of — 1, is taken from S".
With H*! 0 |HID
. HEZ HIE
His 63 |Vih 0
i ing + 1.0 to N ing +1.0
With H and H +1 Elthg:{ HID adding to V7, or HIE adding
to N7,
L Sl o2
wantand g Lys
Lys 10.4
with H*' and H®? 0 |LYS, adding - 1to N°.
With H* 0 |TYR
Tyr 10.0 - ofn
H -1
Without H 1 gnYR, null charge in £1°, and the rest (up to — 1), from
With 4 hydrogens " | +1 |ARG
Arg 12.0
With 3 hydrogens # 710 ARG, reduce 0-25 the charge in all " atoms.

mod
aFor His, the PK"q corresponds to the protonation of either HID or HIE to become charged. N-
terminal and C-terminal groups were not considered as ionizable in this work and are not

meod

shown. The a values are from ref. 10.
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Table S3. Atoms from the mutated wild type variant residue used to place the

charge of an ionizable residue in the mutant.

Wild type Atom holding Wild type Atom holding
residue charge in mutant residue charge in mutant
Asp cY Glu c?
Arg ct His cr
Tyr o" Lys NS
Cys s Gly c*
Ala ct Ser o
Thr ct Leu cY
Ile ct Val ch
Asn cY Gln c?
Trp c*3 Phe ct
Pro ch Met (o

13



Table S4. Parameters used for Delphi calculations 2

Program version

Delphi V. 4 Release 1.1

Main equation

Linear Poisson-Boltzmann

€in 20

€out 78.54

Tsolvent 14 A

T Amber's leaprc. ff03.r1 with hydrogen atoms of null radius set to
1.0 A radius

Surface type Solvent accessible surface

Z; +leC

Tion,i 204

o () Amber's leaprc.ff03.r1 with special rules for protonated variants

Numerical method

Finite differences

Convergence criteria

-4
Changes less than 107 kpT kJ

800 jterations.

in all grid points, or a maximum of

Grid points As many as needed so that the major dimension of the studied
protein occupies, at most, 80% of the grid.
Grid spacing 054

Grid center

Center of the parallelepiped containing the studied protein (grid
edges are parallel to the coordinate axis). That parallelepiped is
later enlarged to become the cubic grid.

Boundary condition

coulombic (Debye-Hiickel approximation).

2@ Atomic charges and radii are discussed in the Methods section.
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Table SS5. Parameters used in the Metropolis Monte Carlo

calculations.
Parameter Value
T Depends on the case studied.
pH Depends on the case studied.
equilibration_scans 1000
full_scans 5000
single move probability 0.95
double move probability 0.03
triple_move_probability 0.02
E reshold 3RTIn 10 kjmol ~*
Pseudo-random number Linear congruential
generator




Table S6. Mean and standard deviation of the absolute values of

u
BAG el int (equation S16), the contribution to the stabilizing energy due

to the electrostatic interaction energy between residues in the three
ensemble unfolded models. The data refers to the 80 mutants of the
complete set. The mean and standard deviation of the absolute

predicted stabilizing energy of the Simple model (AAGgimpie) is shown

for comparison.

Mean absolute | Std. dev. of the
Model value absolute value
(kJmol™1) (kjmol™ 1Y
Minimum energy (
6.09 5.00
AAGelel,jint)
Boltzmann energy (
5.74 4.80
AAGelel,]int)
Average energy (AAGelel,]int) 7.35 6.48
Simple unfolded (AAG) 5.57 5.89

16



