Supplementary Information

Effect of Graphene with Nanopore on Metal

Clusters Properties

Hu Zhou^a, Xianlang Chen^a, Lei Wang^a, Xing Zhong^a, Guilin Zhuang^a, Xiaonian Li^a, Donghai Mei^b, Jianguo Wang^a*

^aCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R.China.

^bInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

Corresponding Author

*E-mail: jgw@zjut.edu.cn. Fax: +86-571-88871037. Tel: +86-571-88871037.

Figure S1. Pristine graphene and graphene with different size nanopore

Figure S2. Optimized structures and binding energies of (a) Rh_4 , (b) Ir_4 on different graphene (G, GV, GV1, GV2, GV3, GV6).

7	A 40 mm	Charge (e)	
5 6	Atoms	Pd (GV6)	Pd (G)
-4	1	0.23	0.12
	2	0.22	0.12
2	3	0.21	0.10
	4	0.20	0.11
7 6	5	0.12	-0.02
	6	0.12	0.00
	7	0.12	-0.02
	8	0.02	0.01
	Total	1.24	0.42

Figure S3. Charge of each Pd atoms on hexavacancies and pristine graphene (a), (b) relevant Pd atoms (c) charge of relevant Pd atoms.

Figure S4. Projected density of states(PDOS) of the most stable adsorption structures on each graphene support (G, GV1, GV2, GV3, GV6). (a) PDOS of Ir₄ clusters, (b) relevant Ir₄-Graphene structures, (c) relevant Rh4-Graphene structures, (d). PDOS of Rh₄ clusters.

Figure S5. Optimized structures and CO adsorption energies on (a) Pd_{4} , (b) Pd_{111} .