
Supplementary Material for
A continuum state variable theory to model the size-dependent surface energy of

nanostructures

S1. Continuum-based framework

We denote ∇, Div and ∇2 as the gradient, divergence and Laplacian operators, respectively. The
magnitude of a vector b is denoted by |b|. The scalar product between two vectors a and b is denoted by
a ·b. In our continuum theory, R represents the region occupied by a continuum body in three-dimensional
space with vector n being the outward unit normal on its boundary denoted by S. The area element
and volume element of the body is denoted by dA and dV, respectively. For the sake of transparency, we
develop our theory under isothermal conditions and in the absence of deformation, body forces, and heat
fluxes/sources.

S1.1. Micro-force balance
For the surface effect variable λ, the micro-force system which describes the forces that perform work

associated to changes in the atomic arrangement caused by the creation of a free surface consist of: (a) the
micro-traction vector, c, measured per unit area, and (b) the scalar internal micro-force, πint, measured per
unit volume. As a first-cut approach, we assume that the external micro-force vanishes [1].

Following the methodology of Gurtin [1], we write the micro-force balance equation as∫
S
c · n dA =

∫
R
πint dV. (S1)

Applying the divergence theorem in Eq. S1 and localizing the result within R results in

Div c = πint. (S2)

S1.2. Balance of energy
With the vector m = ∇λ , recall that the Helmholtz free energy per unit volume, ψ = ψ̂(λ,m). The first

law of thermodynamics is given by ∫
S
(c · n) λ̇dA =

˙∫
R
ϵdV (S3)

where ϵ represents the internal energy per unit volume. With η and θ > 0 representing the entropy per unit
volume and the absolute temperature, respectively, we have

ϵ = ψ + ηθ =⇒ ϵ̇ = ψ̇ + η̇θ (S4)

under isothermal conditions i.e. θ̇ = 0. Along with the use of Eqs. S2 and S42, we apply the divergence
theorem in Eq. S3 and localize the result within R to obtain

c · ṁ + πintλ̇ − η̇θ = ψ̇ =
∂ψ

∂λ
λ̇ +

∂ψ

∂m
· ṁ. (S5)

S1.3. Dissipation inequality
We write the second law of thermodynamics as

˙∫
R
η dV ≥ 0. (S6)

Localizing inequality S6 within R, and then multiplying both sides of the localized inequality by θ yields

η̇θ ≥ 0. (S7)

Substituting Eq. S5 into inequality S7 results in the dissipation inequality(
c − ∂ψ

∂m

)
· ṁ +

(
πint − ∂ψ

∂λ

)
λ̇ ≥ 0. (S8)

1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2015



S1.4. Reduced dissipation inequality

Substituting ψ = (1/2)ωλ2 + (1/2)κ |m|2 into inequality S8 and using standard continuum thermody-

namics arguments yield c =
∂ψ

∂m
= κm , and the reduced dissipation inequality

Γ =
(
πint − ωλ

)
λ̇ ≥ 0 (S9)

where Γ represents the non-negative dissipation density. To rule out trivial cases, we assume that the atomic
rearrangement process caused by the creation of a free surface is strictly dissipative [2]. Hence, inequality S9
then reduces to (

πint − ωλ
)
λ̇ > 0 for λ̇ ̸= 0. (S10)

S1.5. Driving force for atomic rearrangement & kinetic relation

Let fλ ≡ πint − ωλ represent the driving force for atomic rearrangement caused by the creation of a free
surface. To satisfy inequality S10, we take fλ = βλ̇ where β > 0 denotes the damping coefficient (with units
of force per unit velocity) for the atomic rearrangement process caused by the creation of a free surface.
Using Eqs. S2 and c = κm then results in the kinetic relation

λ̇ = β−1fλ = β−1
{
πint − ωλ

}
= β−1 {Div c − ωλ} = β−1

{
κ∇2λ− ωλ

}
. (S11)

Once steady-state conditions are achieved, the surface effect variable will cease to evolve i.e. λ̇ = 0. Hence,
the characteristic equation at steady-state is then given by

λ̇ = β−1
{
κ∇2λ− ωλ

}
= 0 =⇒ l2s ∇2λ− λ = 0 (S12)

where ls =
√
κ/ω represents the characteristic length scale for the atomic rearrangement process caused by

the presence of the free surface. Generally, ls can depend on type of material, structure (crystalline/amorphous)
and crystal orientation.

S2. Equilibration process of the surface effect variable field

S2.1. One-dimensional simulations

Consider a three-dimensional solid plate of thickness hf . Let axis−z denote the thickness direction of the
plate. We impose periodic boundary conditions on this plate in all directions for time t < 0. This plate is
also taken to occupy the space spanning coordinates z = −hf/2 to z = +hf/2 along axis−z. Since periodic
boundary conditions are imposed on the plate in all directions, we set λ = 0 throughout the plate for time
t < 0. The periodic boundary conditions imposed on the plate in direction-z are released for time t ≥ 0,
and therefore the plate has a free surface at planes z = ±hf/2 for time t ≥ 0.

We shall numerically simulate the equilibration process of the surface effect variable field within the plate
for time t ≥ 0. Let the normalized coordinate along the z−axis, z̄ = z/ls, the characteristic time, τ = β/ω,
and the normalized time, t̄ = t/τ . For the present case, Eq. S11 can be reduced to the one-dimensional
non-dimensionalized form

dλ

dt̄
=

d2λ

dz̄2
− λ. (S13)

The equilibration process of the surface effect variable field can be modeled by a phase field-like simulation
via the discretization of Eq. S13 in time and space. We have implemented the time and space discretization
of Eq. S13 into MATLAB [3] to perform the phase field-like simulations. For our numerical simulations,

we impose: (a) the boundary conditions λ = 1 at z̄ = ± hf
2ls

, and (b) the initial conditions λ = 0 at t̄ = 0

for − hf
2ls

< z̄ < +
hf
2ls

. The numerical simulations are stopped once the surface effect variable field has

equilibrated i.e. the surface effect variable field has reached a steady-state profile.
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Fig. S1 shows the equilibration process of the surface effect variable field for hf = 16ls i.e. for a relatively
thin plate. Using Eq. 11 of the main part of the paper, we have also plotted the steady-state solution for
the surface effect variable field for hf = 16ls in Fig. S1. The numerical simulation results show that the
surface effect variable field has equilibrated at approximately t̄ = 4.0. From the numerical simulation results
plotted in Fig. S1, we can see that the equilibration process of the surface effect variable starts from the free
surface and then progresses towards the center of the plate.

We have also performed a numerical simulation for a relatively thick plate i.e. hf = 100ls, and Fig. S2
shows the equilibration process of the surface effect variable field for hf = 100ls. As previously done, we also
use Eq. 11 of the main part of the paper and plot the steady-state solution for the surface effect variable
for hf = 100ls in Fig. S2. The numerical simulation results show that the surface effect variable field has
equilibrated at approximately t̄ = 3.5. From the results shown in Fig. S2, we can see that for a relatively
thick plate, major atomic rearrangement is confined to the regions in the very near vicinity of the free
surface, and the interior region of the relatively thick plate undergoes very minimal or effectively negligible
atomic rearrangement due to the presence of the free surface.

S2.2. Two-dimensional simulations

Consider a three-dimensional solid plate which has in-plane dimensions of hf × hf , measured along
axes−x and y. We impose periodic boundary conditions on this plate in all directions for time t < 0. This
plate is also taken to occupy the space spanning coordinates x = −hf/2 to x = +hf/2 along axis−x, and
y = −hf/2 to y = +hf/2 along axis−y. Since periodic boundary conditions are imposed on the plate in all
directions, we set λ = 0 throughout the plate for time t < 0. The periodic boundary conditions imposed
on the plate in directions-x and y are released for time t ≥ 0, and therefore the plate has a free surface at
planes x = ±hf/2 and y = ±hf/2 for time t ≥ 0.

We shall numerically simulate the equilibration process of the surface effect variable field within the plate
for time t ≥ 0. Let the normalized coordinate along the x−axis, x̄ = x/ls, the normalized coordinate along
the y−axis, ȳ = y/ls, the characteristic time, τ = β/ω, and the normalized time, t̄ = t/τ . For the present
case, Eq. S11 can be reduced to the two-dimensional non-dimensionalized form

dλ

dt̄
=

d2λ

dx̄2
+

d2λ

dȳ2
− λ. (S14)

The equilibration process of the surface effect variable field can be modeled by a two-dimensional phase
field-like simulation via the discretization of Eq. S14 in time and space. We have implemented the time and
space discretization of Eq. S13 into MATLAB [3] to perform the two-dimensional phase field-like simulations.

For our numerical simulations, we impose: (a) the boundary conditions λ = 1 at x̄ = ± hf
2ls

and ȳ = ± hf
2ls

,

and (b) the initial conditions λ = 0 at t̄ = 0 for − hf
2ls

< x̄ < +
hf
2ls

and − hf
2ls

< ȳ < +
hf
2ls

. The numerical

simulations are stopped once the surface effect variable field has equilibrated i.e. the surface effect variable
field has reached a steady-state profile.

Fig. S3 shows the equilibrated profile of the surface effect variable in plates of dimensions 100ls × 100ls
(plate A) and 25ls×25ls (plate B), measured along axes-x and y. For plate A, we can see that major atomic
rearrangement is confined to the regions in the very near vicinity of the free surface but the interior region
of plate A undergoes very minimal or effectively negligible atomic rearrangement due to the presence of the
free surface. However, for plate B, it can be clearly seen that major atomic rearrangement occurs in the
region in the near vicinity of the free surface and also a relatively large region in the interior portion of plate
B due to the presence of the free surface. Furthermore, from the contour plots shown in Fig. S3, we can
also determine from visual inspection that the average value of the surface effect variable within plate B is
larger than the average value of the surface effect variable within plate A. These results are not surprising
since plate B has a smaller size compared to plate A, and therefore we can conclude that the average value
of the surface effect variable within a structure is positively correlated to the surface-to-volume ratio of the
structure.
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S3. Comparison between continuum theory and other theoretical models

Bhatt et al. [4] utilized a thermodynamic model and parameters obtained from DFT simulations to
investigate the size dependent surface energy of selectively-oriented single crystal anatase TiO2 nanoparticle.
Fig. S4 shows the analytical model of Bhatt et al. [4] for the size dependent surface energy of (110),
(103), (100)-oriented single crystal anatase TiO2 nanoparticle as a function of nanoparticle diameter. Using
γ∞s = γ∞s (110) = 1.09Jm−2, γ∞s = γ∞s (103) = 0.83Jm−2 and γ∞s = γ∞s (100) = 0.54Jm−2, we can see from
Fig. S4 that for a given single crystal orientation, our continuum theory i.e. Eq. 17 is able to accurately fit
the analytical model of Bhatt et al. [4]. It is also important to note that we have used ls = 1.747nm in all
of our results in Fig. S4.

References

[1] M. Gurtin, Physica D 92, 178 (1996).
[2] L. Anand, M. Gurtin, Int. J. Solids Struct. 40, 1465 (2003).
[3] MATLAB and Statistics Toolbox 2014, The MathWorks, Inc., Natick, Massachusetts, US.
[4] P. Bhatt, S. Mishra, P. Jha, A. Pratap, Physica B 461, 101 (2015).

4



0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

6

8

Surface e"ect variable

t = 0  

 

 

Numerical simulation

Steady−state analytical solution

 

 

0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

6

8

Surface e"ect variable

Numerical simulation

Steady−state analytical solution

 

 

0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

6

8

Surface e"ect variable

Numerical simulation

Steady−state analytical solution

 

 

0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

6

8

Surface e"ect variable

Numerical simulation

Steady−state analytical solution

 

 

0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

6

8

Surface e"ect variable

Numerical simulation

Steady−state analytical solution

 

 

0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

6

8

Surface e"ect variable

Numerical simulation

Steady−state analytical solution

t = 0.25 

t = 1.0 t = 2.0 

t = 4.0 t = 6.0 

 (
 z

/l
s

)
N

o
rm

a
liz

e
d

 c
o

o
rd

in
a

te

 (
 z

/l
s

)
N

o
rm

a
liz

e
d

 c
o

o
rd

in
a

te

 (
 z

/l
s

)
N

o
rm

a
liz

e
d

 c
o

o
rd

in
a

te

 (
 z

/l
s

)
N

o
rm

a
liz

e
d

 c
o

o
rd

in
a

te

 (
 z

/l
s

)
N

o
rm

a
liz

e
d

 c
o

o
rd

in
a

te

 (
 z

/l
s

)
N

o
rm

a
liz

e
d

 c
o

o
rd

in
a

te

Figure S1: The numerical simulation of the equilibration process of the surface effect variable field for hf = 16ls. The numerical

simulation was conducted using ls =
√
5 arbitrary units and τ = 10 arbitrary units.
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Figure S2: The numerical simulation of the equilibration process of the surface effect variable field for hf = 100ls. The

numerical simulation was conducted using ls =
√
5 arbitrary units and τ = 10 arbitrary units.
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Figure S3: The equilibrated profile of the surface effect variable field in a plate of dimensions (a) 100ls×100ls and (b) 25ls×25ls,
measured along axes-x and y. The numerical simulations were conducted using ls =

√
5 arbitrary units and τ = 10 arbitrary

units.
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Figure S4: Size dependent surface free energy of (110), (103), (100)-oriented single crystal anatase TiO2 nanoparticle as a
function of nanoparticle diameter with γ∞

s = γ∞
s (110) = 1.09Jm−2, γ∞

s = γ∞
s (103) = 0.83Jm−2 and γ∞

s = γ∞
s (100) =

0.54Jm−2. A value of ls = 1.747nm is chosen in our continuum theory i.e. Eq. 17 to fit the analytical model of Bhatt et al.
[4] for each single crystal orientation.
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