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GLOBAL FITTING

For fitting our data we have considered two contributions assigned to excited-state pop-

ulations, A and B, at two different regions on the S1 surface. The rate equations describing

the excited-state dynamics on the S1 potential energy surface are given by:

dN0(t)

dt
= 0 (S1)

dNA(t)

dt
= Wpu(t) ·N0 − kA ·NA(t) (S2)

dNB(t)

dt
= −kB ·NB(t) + kA ·NA(t) (S3)

nA(t) = Wpr(t−∆t) ·NA(t) (S4)

nB(t) = γWpr(t−∆t) ·NB(t) (S5)

NA(B) is the number of molecules in the excited state of species A(B). We assume that

the excitation is unsaturated, i. e. the number of ground state molecules is not altered

significantly by the excitation (N0 is constant). Wpu(pr)(t) describes the temporal shape of

the pump (probe) pulse. We assume that both pulse shapes are Gaussians and their cross-

correlation width is ω. The initially populated species A decays with a rate kA and populates

species B, which grows at rate kA and decays at rate kB. The probe pulse populates the ionic

ground state from species A or B, respectively. This may also proceed via a doubly excited

autoionizing state. The ionic population is given by nA and nB. The factor γ considers that

the two transient species may have different photoionization cross-sections. The solution of

this system of differential equations is:

S(t) ∝ nA + nB (S6)

nA(t) =
A0

2
· exp

(
k2Aω

2

8
− kA∆t

)
· Erfc

(
kAω

2 − 4∆t

2ω
√

2

)
(S7)

nB(t) =
γ

2
· A0 · kA
kA − kB

(
exp

(
k2Bω

2

8
− kB∆t

)
· Erfc

(
kBω

2 − 4∆t

2ω
√

2

)
(S8)

− exp

(
k2Aω

2

8
− kA∆t

)
· Erfc

(
kAω

2 − 4∆t)

2ω
√

2

))
. (S9)

We have performed a global fit, i. e. a single set of parameters were fitted to the temporal

dependence of the photoelectron signal at a given kinetic energy bin. The amplitude A0 is

thus replaced by a kinetic energy dependent amplitude - the decay associated spectrum
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(DAS). For the integrals of the DAS the following relations hold:∫
DASA dEkin = A0 (S10)∫
DASB dEkin = γ · A0 · kA

kA − kB
(S11)

COMPARISON OF DECAY-ASSOCIATED SPECTRA FOR POSITIVE AND NEG-

ATIVE DELAY TIMES

Fig. S1 shows the normalized decay-associated spectra for different wavelength com-

binations and different pulse sequences. All pairs of spectra are remarkably similar and

FIG. S1: Comparison of DAS for 4.66 eV and 5.0-5.2 eV pulses with different pulse sequence.

Blue: 4.66 eV comes first (positive delays). Red: 5.0-5.2 eV comes first (negative delays). A-C)

fast decay. D-F) slow decay.

definitely do not show a shift by the difference of probe photon energy as expected for a

vertical transition. While the spectra associated with the slower decay (D-F) are almost

identical, we find small differences between the spectra associated with the fast decay. How-

ever, these differences are not systematic. We suggest that these differences result from

experimental inaccuracy in determining the temporal overlap and cross-correlation function

between pump and probe pulses. These values are strongly correlated with the fit parame-

ters associated with the fast decay and much less with those associated with the slow decay.

Furthermore, the two components associated with the fast decay are strongly overlapping
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at temporal overlap and decomposition is difficult. Nevertheless, a small contribution from

direct ionization around temporal overlap cannot be excluded.

COMPUTATION OF IONIZATION POTENTIALS

In the present work, we have evaluated the first ionization potential of 9H-Gua in water

for several thousand geometries (130 trajectories, up to 90 points per trajectory) in order

to compare with the experimental data (see Figure 3 of the main paper). Our guideline in

selecting a computational method for this purpose was to be consistent with the approach

used to generate the trajectories (OM2/MRCI) and to apply the simplest treatment that is

expected to be realistic. Therefore, our first choice was to apply Koopmans’ theorem. At

this level, the ionization potential is evaluated by molecular orbital (MO) theory assuming

that the MOs do not change during ionization. For closed-shell systems, the ionization

potential (IP ) is then equal to the negative MO energy: IPi = −εi. For restricted open-shell

treatments, the derivation yields additional two-electron terms that must be included for

proper application of Koopmans’ theorem. In our case (open-shell singlet with two unpaired

electrons in MOs i and j, εi > εj , half-electron treatment), the appropriate equation is:

IPi = −εi − Jii/4 − Jjj/4 + 3Kij/2, with J and K denoting the Coulomb and exchange

integrals in the MO basis. This is the equation applied in our calculations.

An obvious question is whether this approach is adequate for the purposes of the present

work (besides being simple and efficient for the very large number of required IP evalua-

tions). This can be checked by higher-level calculations and by comparison with experiment.

Going beyond Koopmans’ theorem at the semiempirical OM2 level can be done in two

steps. First, one can carry out separate OM2 SCF calculations for the open-shell singlet

excited state (S1) and for the doublet ground state of the cation generated by ionization

(D0) to account for orbital relaxation in the cation, which will cause the resulting OM2-

∆SCF value of the ionization potential to be lower than that given by Koopmans’ theorem.

In a second step, one can perform corresponding OM2/MRCI calculations of the D0−S1

energy difference (using the same active space and the same options as in the trajectory

calculations) to include also differences in correlation energy, which will generally raise the

computed ionization potential (since ionization removes one electron from the system). The

corrections from these two refinements will thus tend to cancel each other – this is the
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reason why ionization potentials determined from Koopmans’ theorem (KT) are often more

realistic than expected.

For a more quantitative assessment, we have computed the ionization potentials of iso-

lated 9H-Gua for two typical geometries taken from a representative trajectory at time

t = 0 and t = 100 fs using the three approaches outlined above (OM2-KT, OM2-∆SCF, and

OM2/MRCI). Those results are summarized in Table S1. For comparison, we have also cal-

culated the D0−S1 energy difference of isolated 9H-Gua at these two geometries by density

functional theory (DFT) at the B3LYP/TZVP level (TDDFT for S1, UDFT for D0).

IP (t = 0) / eV IP (t = 100) fs / eV Difference / eV

OM2-KT 3.57 5.06 1.49

OM2-∆SCF 3.48 4.87 1.39

OM2/MRCI 3.93 5.24 1.31

B3LYP/TZVP 3.39 4.42 1.03

TABLE S1: Calculated ionization potentials of the S1 state of 9H-Gua.

Evidently, all approaches yield ionization potentials of roughly similar magnitude, and

they all predict a significant increase within the first 100 fs of the excited-state dynamics.

Experimentally, this increase is clearly observed and is of similar magnitude (see Fig-

ure 3 of the main paper). All approaches considered thus agree with experiment in this

crucial qualitative aspect. To achieve a more quantitative fit, the OM2-KT values were cal-

ibrated against experiment (uniform shift of -1.0 eV, see the main paper) which gave a very

satisfactory match with experiment (see Figure 3b of the main paper). To achieve a better

quantitative agreement without calibration, it would be necessary to apply significantly more

accurate computational methods (DFT at the B3LYP/TZVP would not be sufficient for this

purpose, see the results in Table S1). This is beyond the scope of the present computational

work, which focuses on a qualitative understanding of the experimental observations.

In summary, these considerations and comparisons justify the application of Koopmans’

theorem at the OM2 level to compute the time evolution of the ionization potential of

9H-Gua in water during the excited-state dynamics.
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AB-INITIO RESULTS

The ab initio calculations and their interpretation were performed at MBI Berlin. For an

evaluation of energies and transition dipole moments the MOLPRO program package was

used [S1]. We have employed the aug-cc-pVTZ basis set. In CASSCF calculations three

active orbitals were selected: HOMO, LUMO and LUMO+1. Under these circumstances

the third excited state is the lowest doubly excited state. The CASSCF calculations were

followed by the MRCI procedure - more precisely MRCISD(+Q) (with Davidson correction).

The geometries investigated are documented in tables S3-S8 in the final section of this

Supporting information.

Table S2 summarizes our ab-initio results on the accessibility of a doubly-excited state.

The potential energies are also displayed in Fig. S2. It must be noted that the behaviour

of the specified electronic state can only be interpreted qualitatively. In the first instance,

quantitative discrepancies may be explained by the absence of the water environment. Even-

tually, the S1 and 2xEx potential energies given in Fig. S2 should be lowered by 0.5 . . . 1 eV

to produce realistic results. Fig. S3 shows the CASSCF HOMO (π) and LUMO (π∗) orbitals.

S0 S1 2xEx D0 ∆ Etheo
kin |µ|S0↔S1 |µ|S1↔2Ex

eq. geom. 0 4.80 10.05 7.32 5.25 2.73 0.15 3.3

geom. 1 2.25 6.18 10.39 8.89 4.21 1.50

n
ot

re
le

va
n
t

2.8

geom. 2 3.84 7.02 11.60 11.10 4.58 0.50 1.4

geom. 3 3.13 6.42 11.04 9.81 4.62 1.23 0.7

geom. 4 2.42 6.14 10.86 9.73 4.72 1.13 0.7

geom. 5 4.00 5.99 10.69 10.61 4.70 0.08 0.6

TABLE S2: Calculated MRCI energies of S0, S1, the doubly excited state (2Ex) and the lowest

ionic state in eV. ∆ is the potential energy difference between S1 and 2xEx and Etheo
kin is the

potential energy difference between the lowest doubly excited and the ionic D0 state. Calculated

transition dipole moments are given in Debye.
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FIG. S2: Potential energies of the S0, S1, the lowest doubly excited 2xEx and the ionic D0 state

for different representative geometries along a representative trajectory (from table S2). The

green line represents the total absorbed photon energy.

a) b)

FIG. S3: CASSCF orbitals of guanine (t = 0) for HOMO (π) (a) and LUMO (π∗) (b).
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ANALYTICAL CONSIDERATIONS

In this section we will show that the kinetic energy distribution observed for direct ion-

ization and autoionization depend differently on the applied photon energies. Let’s consider

the potential energy landscape sketched in Fig. S4. From energy conservation and Fig. S4

FIG. S4: Involved potentials to explain autionization and direct ionization. h̄ωpu and h̄ωpr are

the pump and probe photon energies, ES1 , E2Ex and ED0 the energies of the minima (+

zero-point-energy) of the S1, 2Ex and D0 electronic states relative to S0. Evib
1 , Evib

2 , and Evib
i are

the vibrational energies stored in the S1, 2Ex and D0 electronic states. Ekin is the kinetic energy

of the photoelectrons.

we derive the following relations:

h̄ωpu = ES1 + Evib
1

h̄ωpu + h̄ωpr = ED0 + Evib
i + Ekin

(S12)

In general, due to the finite Franck-Condon window, after ionization several vibrational

levels are excited. From eq. (S12) the following relation between the mean kinetic energy of
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photoelectrons Ekin and the mean vibrational energy in the cation Evib
i follows:

Ekin = h̄ωpr + ES1 − ED0 + (Evib
1 − Evib

i ). (S13)

In case of direct ionization, (Evib
1 −Evib

i ) can be obtained from the Franck-Condon overlap, if

the S1 and D0 potential surfaces are known. For a vertical transition (Evib
1 −Evib

i ) is almost

independent of h̄ωpr, and the mean kinetic energy increases with increasing probe photon

energy.

The situation is different in case of autoionization. From Fig. S4, we derive the following

relation:

h̄ωpu + h̄ωpr = E2Ex + Evib
2 = ED0 + Evib

i + Ekin. (S14)

The mean kinetic energy in this case is therefore given by:

Ekin = E2Ex − ED0 + (Evib
2 − Evib

i ). (S15)

Comparing eq. (S13) and (S15) we obtain that Ekin is the same for direct ionization and

autoionization if the 2Ex potential surface is parallel to S1 and furthermore the relation

h̄ωpr = E2Ex − ES1 (S16)

is fulfilled which is compatible with our ab-initio calculations.

For a more detailed discussion we will further simplify our model and consider only one

vibrational degree of freedom. All electronic states are approximated by harmonic oscillators

of the same frequency ω0. This allows an easy calculation of the overlap matrix elements

between a state of vibrational quantum number v with a state of quantum number w in a

potential shifted by the distance ∆q. Introducing the dimensionless quantity

∆x = ∆q

√
µω0

h̄
, (S17)

where µ is the reduced mass, we define (cf. Fig. S5)

fv−w(∆x) =
〈
Ψ(1)
v |Ψ(2)

w

〉
, (S18)

which yields [S2]:

fv−w(∆x) =

√
v!

w!

(
∆x√

2

)w−v
e−

(∆x)2

4 Lw−vv

[
(∆x)2

2

]
, (S19)

S9



FIG. S5: Most simple approximation of the potentials involved: One-dimensional harmonic

potentials of the same shape.

where Lαn(z) =
∑n

m=0(−1)m
(
n+α
n−m

)
zm

m!
is the associated Lagurerre polynomial. Assuming an

infinite Franck-Condon window for the transtion from the initial state |v〉 to the final state

|w〉, the average quantum number of the final state can be expressed as

w =
∞∑
w=0

w |fv−w(∆x)|2 = v +
(∆x)2

2
. (S20)

However, the Franck-Condon window is limited, due to Ekin ≥ 0. If we consider an autoion-

ization process with E2Ex − ED0 = nh̄ω0, we can write

w =

∑n+v
w=0w |fv−w(∆x)|2∑n+v
w=0 |fv−w(∆x)|2

. (S21)

For the example n = 10, the dependence of w− v on the initial quantum number v is shown

in Fig. S6 for different values (∆x). Since Evib
2 = vh̄ω0, and Evib

i = wh̄ω0 we find from Fig.
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S6, that the limitation of the Franck-Condon window causes a dependence of Ekin on the

total absorbed photon energy. This effect is more pronounced for larger values (∆x).

FIG. S6: The difference between mean vibrational energy in the ionic state and the vibrational

energy in the autoionizing state for different number of vibrational quanta in the initial state and

for different displacements of the two potentials.

So far, we restricted our considerations to only one vibrational degree of freedom. We

will now turn to the more general case with more than one vibrational degree of freedom.

Here, we restrict ourselves to equal harmonic vibrational frequencies ω0.

If the potential is shifted by the same amount (∆x) for all N vibrational degrees of

freedom, the problem can be reduced again to the one-dimensional case: Due to the N -

dimensional degeneracy, new vibrational coordinates can be introduced in such a way, that

for N − 1 vibrational degrees ∆xnew = 0, and for the last vibrational degree we obtain
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∆xnew = ∆x
√
N . Therefore, new features can only be expected if the shift of a potential

relative to the reference ground state potential depends on the vibrational degree of freedom.

As an example, we choose N = 3. The S1 potential is shifted relative to S0 by ∆x1, ∆x2 and

∆x3. The 2Ex shift from S0 is given by ∆y1, ∆y2 and ∆y3, for D0 we write correspondingly

∆z1, ∆z2 and ∆z3. In an autoionization process via 2Ex, the probability to find t quanta in

D0, if r vibrational quanta are located in S1 and s in 2Ex, is proportional to

pauto(r, s, t) =

[ ∑
r1,r2,s1,s2,t1,t2

f0↔r1(∆x1)f0↔r2(∆x2)f0↔r−r1−r2(∆x3) × (S22)

× fr1↔s1(∆y1 −∆x1)fr2↔s2(∆y2 −∆x2)fr−r1−r2↔s−s1−s2(∆y3 −∆x3)×

× fs1↔t1(∆z1 −∆y1)fs2↔t2(∆z2 −∆y2)fs−s1−s2↔t−t1−t2(∆z3 −∆y3)

]2
The mean kinetic energy of photoelectrons can be determined if the mean number of vibra-

tional quanta tauto in the ionic state is known, where

tauto(r, s) =

∑t=n+s
t=0 t · wauto(r, s, t)∑t=n+s
t=0 wauto(r, s, t)

(S23)

In contrast to eq. (S23), the corresponding probability for direct ionization can be expressed

by

pion(r, t) =

[ ∑
r1,r2,t1,t2

f0↔r1(∆x1)f0↔r2(∆x2)f0↔r−r1−r2(∆x3) × (S24)

× fr1↔t1(∆z1 −∆x1)fr2↔t2(∆z2 −∆x2)fr−r1−r2↔t−t1−t2(∆z3 −∆x3)

]2
with the mean quantum number

tion(r) =

∑t=n+r
t=0 t · wion(r, t)∑t=n+r
t=0 wion(r, t)

(S25)

In eq. (S23) we set E2Ex−ED0 = nh̄ω0, whereas in eq. (S25) the requirement Ekin ≥ 0 is

ensured by the condition ES1−ED0 + h̄ωpr = nh̄ω0. As a simple example, we set n = 10 and

∆x1 = 1.0, ∆x2 = 2.0, ∆x3 = 3.0, ∆y2 = 3.0, ∆y3 = 4.0, ∆z1 = 3.5, ∆z2 = 2.5, ∆z3 = 1.5.

Using these specified parameters we will compare the vibrational energy in the D0 state for

direct ionization and autoionization in dependence on the vibrational energy in the S1 (and

2Ex) state. The results are outlined in Fig. S7. For direct ionization, the vibrational energy

in the ion increases approximately by the same number of quanta as the vibrational energy
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FIG. S7: Mean number of vibrational quanta in the ion as function of the vibrational quantum

number in the S1 state for different vibrational excitation of the 2Ex state for direct ionization

and autoionization

in the S1 state. The situation is qualitatively different for autoionization from the 2Ex state.

Here, we do not observe any clear tendency for several quanta vibrational energy s in the

2Ex state. For a given s value there are several r values yielding nearly the same vibra-

tional excitation in the ion (as in the one-dimensional case), however, other r values unreeve.
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GEOMETRIES USED IN THE AB INITIO CALCULATIONS
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Eq. geometry

Number Atom Charge X Y Z

1 N 7.00 −0.216 307 539 −6.158 541 741 −3.052 143 937

2 C 6.00 0.457 345 603 −3.728 121 443 −2.520 644 856

3 N 7.00 −1.140 799 584 2.399 918 191 −0.463 170 930

4 H 1.00 −0.347 512 793 4.090 896 345 −0.087 543 963

5 H 1.00 −2.959 393 552 2.200 844 954 0.013 691 935

6 N 7.00 −1.040 970 323 −1.836 321 318 −1.646 925 047

7 C 6.00 0.188 704 007 0.383 809 235 −1.306 507 514

8 N 7.00 2.731 785 677 0.728 922 946 −1.820 621 417

9 H 1.00 3.532 639 215 2.477 095 381 −1.526 139 989

10 C 6.00 4.355 351 838 −1.190 794 217 −2.641 636 348

11 O 8.00 6.660 194 355 −0.723 494 934 −2.952 686 082

12 C 6.00 3.123 354 997 −3.570 284 033 −3.068 243 837

13 N 7.00 3.958 980 781 −5.883 541 046 −3.897 766 013

14 C 6.00 1.940 140 264 −7.402 740 279 −3.875 332 280

15 H 1.00 1.909 652 292 −9.374 726 737 −4.398 750 835

16 H 1.00 −1.954 982 230 −7.006 885 060 −2.791 793 061

TABLE S3: Coordinates for equilibrium geometry in bohr.
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geom. 1

NR ATOM CHARGE X Y Z

1 N 7.00 −0.410 085 688 −6.152 419 161 −2.257 687 935

2 C 6.00 −0.258 648 705 −3.513 832 358 −2.050 239 469

3 N 7.00 −3.562 715 793 1.863 084 772 −0.777 879 306

4 H 1.00 −3.562 182 891 3.717 289 722 −1.277 396 283

5 H 1.00 −5.181 908 732 1.188 278 689 −0.069 160 197

6 N 7.00 −2.216 355 845 −2.206 667 219 −1.376 306 439

7 C 6.00 −1.683 944 404 0.375 190 006 −1.691 114 025

8 N 7.00 0.288 606 534 1.456 534 762 −2.918 693 348

9 H 1.00 0.348 219 834 3.395 718 805 −3.319 940 788

10 C 6.00 2.852 915 761 0.038 034 518 −2.867 060 361

11 O 8.00 4.670 348 530 0.996 063 306 −3.866 396 672

12 C 6.00 2.386 691 979 −2.885 557 001 −2.824 161 688

13 N 7.00 3.344 654 626 −4.910 413 668 −4.022 533 404

14 C 6.00 1.783 514 074 −6.863 919 946 −3.505 181 192

15 H 1.00 1.980 929 984 −8.821 714 013 −4.159 933 502

16 H 1.00 −1.962 121 540 −7.310 815 610 −1.734 386 864

TABLE S4: Coordinates for geometry 1 in bohr.
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geom. 2

NR ATOM CHARGE X Y Z

1 N 7.00 −0.514 339 989 −6.063 843 917 −2.338 796 870

2 C 6.00 −0.120 623 109 −3.475 374 541 −2.132 931 995

3 N 7.00 −3.598 085 797 2.041 692 238 −1.430 877 950

4 H 1.00 −3.768 813 105 3.878 241 476 −1.730 376 865

5 H 1.00 −4.732 758 625 1.673 554 690 0.035 725 273

6 N 7.00 −1.931 322 783 −1.790 156 462 −1.126 102 920

7 C 6.00 −1.458 288 428 0.607 490 259 −1.721 464 917

8 N 7.00 0.406 281 670 1.402 161 672 −3.220 888 903

9 H 1.00 −0.011 018 993 2.897 055 984 −4.463 805 243

10 C 6.00 2.814 318 105 0.259 451 839 −3.001 257 373

11 O 8.00 4.369 838 611 1.116 790 349 −4.602 310 830

12 C 6.00 2.635 410 173 −2.941 695 095 −2.759 584 077

13 N 7.00 3.463 987 052 −4.897 153 460 −4.007 011 194

14 C 6.00 1.623 206 717 −6.743 752 262 −3.783 751 390

15 H 1.00 1.871 762 395 −8.744 380 751 −4.429 126 879

16 H 1.00 −2.092 093 123 −7.146 781 713 −1.908 118 836

TABLE S5: Coordinates for geometry 2 in bohr.
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geom. 3

NR ATOM CHARGE X Y Z

1 N 7.00 −0.272 874 564 −6.031 495 585 −2.298 507 909

2 C 6.00 −0.203 170 126 −3.389 276 729 −2.291 568 834

3 N 7.00 −3.343 229 772 2.384 838 157 −1.512 047 357

4 H 1.00 −3.065 373 891 4.211 010 909 −1.640 631 881

5 H 1.00 −5.082 097 177 1.991 818 586 −0.900 057 659

6 N 7.00 −1.838 648 724 −1.812 606 408 −1.247 160 665

7 C 6.00 −1.307 286 082 0.763 266 054 −1.831 263 674

8 N 7.00 0.787 923 200 1.825 683 313 −3.040 644 935

9 H 1.00 0.519 051 077 3.642 934 668 −3.798 495 033

10 C 6.00 3.099 717 773 0.462 041 819 −3.582 735 552

11 O 8.00 4.539 262 007 0.902 501 075 −5.273 420 609

12 C 6.00 2.324 941 398 −2.722 014 432 −3.227 661 681

13 N 7.00 3.458 563 538 −4.696 479 663 −4.143 419 185

14 C 6.00 1.962 983 255 −6.631 194 504 −3.683 869 915

15 H 1.00 2.376 840 836 −8.718 064 424 −3.711 745 265

16 H 1.00 −1.713 909 792 −7.279 138 131 −1.692 684 388

TABLE S6: Coordinates for geometry 3 in bohr.
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geom. 4

NR ATOM CHARGE X Y Z

1 N 7.00 −0.187 487 288 −5.677 532 873 −2.575 133 579

2 C 6.00 0.066 361 513 −3.057 752 625 −2.493 123 244

3 N 7.00 −2.948 105 046 2.687 523 151 −1.277 366 048

4 H 1.00 −2.584 559 533 4.559 695 616 −1.004 272 276

5 H 1.00 −4.802 846 677 2.168 844 350 −1.024 960 998

6 N 7.00 −1.904 942 206 −1.558 392 890 −1.924 128 596

7 C 6.00 −1.227 877 900 0.960 132 053 −1.908 921 969

8 N 7.00 1.124 281 224 1.701 713 499 −2.777 377 739

9 H 1.00 1.245 369 205 3.585 585 259 −2.842 990 920

10 C 6.00 3.276 743 538 0.148 358 619 −3.637 711 465

11 O 8.00 4.282 945 224 0.735 275 430 −5.750 054 893

12 C 6.00 2.771 432 660 −2.684 926 667 −3.292 872 350

13 N 7.00 3.612 396 693 −4.950 492 870 −4.209 671 093

14 C 6.00 1.870 428 248 −6.777 631 272 −3.762 425 830

15 H 1.00 2.438 311 738 −8.841 044 022 −3.764 852 239

16 H 1.00 −1.633 025 734 −6.753 185 774 −2.429 231 604

TABLE S7: Coordinates for geometry 4 in bohr.
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geom. 5

NR ATOM CHARGE X Y Z

1 N 7.00 −0.365 684 683 −5.580 172 293 −3.505 426 856

2 C 6.00 −0.148 638 299 −3.094 619 292 −2.910 569 416

3 N 7.00 −2.520 586 634 2.643 316 787 −1.173 366 860

4 H 1.00 −2.059 310 154 4.536 580 486 −1.032 442 423

5 H 1.00 −4.269 960 916 2.013 554 216 −0.575 200 509

6 N 7.00 −1.561 121 654 −1.454 433 386 −1.621 490 845

7 C 6.00 −0.666 655 695 1.050 387 263 −1.840 022 555

8 N 7.00 1.612 578 897 1.848 103 024 −2.524 649 545

9 H 1.00 1.765 317 901 3.729 773 253 −2.661 737 838

10 C 6.00 3.669 209 420 0.186 085 112 −3.423 518 567

11 O 8.00 4.211 475 782 0.880 122 938 −5.568 969 997

12 C 6.00 2.610 815 388 −2.630 961 758 −3.064 876 893

13 N 7.00 3.793 024 276 −4.824 521 836 −3.562 693 117

14 C 6.00 2.057 677 431 −6.661 346 974 −4.012 497 069

15 H 1.00 2.477 221 199 −8.683 677 078 −4.154 098 027

16 H 1.00 −1.848 926 944 −6.318 295 541 −4.082 275 206

TABLE S8: Coordinates for geometry 5 in bohr.
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