Supporting Information

Impact of Tellurium on the Structure and ⁷⁷Se NMR Spectra of Selenium-Rich Ternary Ge-Te-Se Glasses: a combined experimental and computational investigation

Lila Bouëssel du Bourg,^{*a*} Claire Roiland,^{*b*}, Laurent le Pollès,^{*a*} Michaël Deschamps,^{*c*} Catherine Boussard-Plédel,^{*b*} Bruno Bureau,^{*b*} Chris J. Pickard^{*d*} and Eric Furet^{**a*}

^a Institut des Sciences Chimiques de Rennes - UMR6226 - ENSCR, 11 allée de Beaulieu, CS50837, 35708 Rennes Cedex 7, France

^b Institut des Sciences Chimiques de Rennes - UMR6226, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France

^c CEMHTI, CNRS UPR 379, Orléans, France

^d Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

Contents:

Figure S1. ⁷⁷Se ssNMR spectrum of $Ge_{20}Se_{20}Te_{60}$ acquired at 300MHz (7.1 T) using a 4 mm probe and MAS rotation conditions of 14kHz.

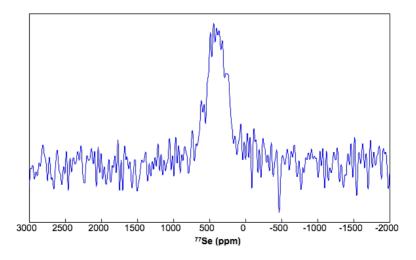

Figure S2. Histograms of the nature of the coordination numbers for the germanium atoms calculated on the 300K trajectories of our six Se-rich Ge-Te-Se models. First row, the three models (R_{Se1-3}) derived from the first heterogeneous GeSe₄ glass G_1 . Second row, the three models R_{Se1-3} ' derived from the first heterogeneous GeSe₄ glass G_2 .

Figure S3. Individual radial distribution functions for our six Se-rich Ge-Te-Se glasses. The left column corresponds to the glasses derived from G_1 , and the right column from the G_2 GeSe₄ heterogeneous model.

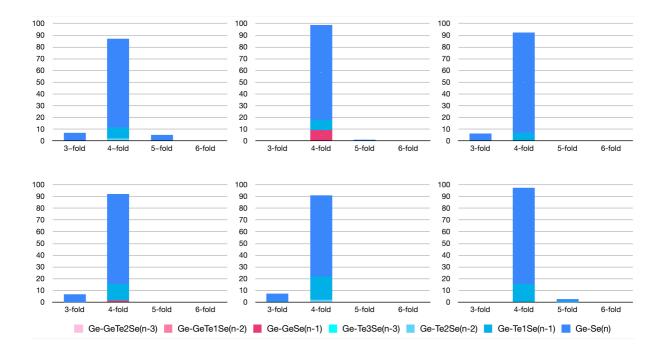
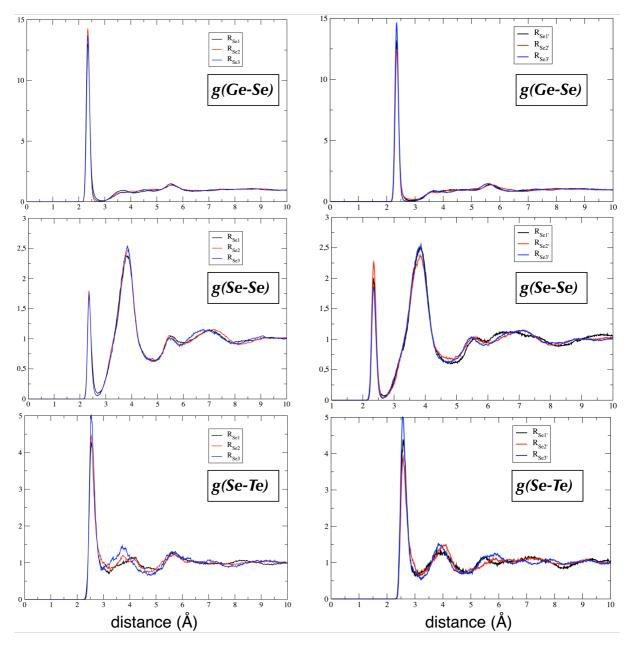
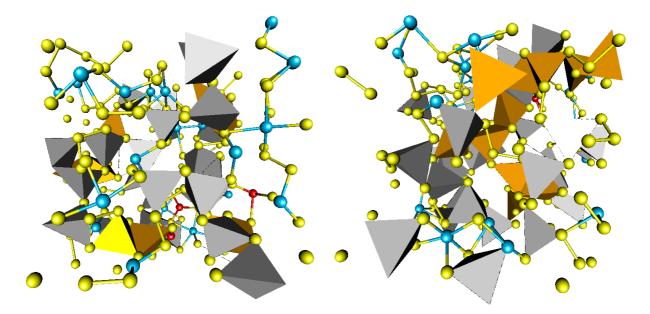

Figure S4. Visualisation of two structures at 300K of our selenium-rich glasses derived from the G_1 (left) and G_2 (right) models together with tetrahedra for the Ge coordination spheres. (CS tetrahedra – grey, ES tetrahedra – orange). The germanium atoms are in red, the selenium atoms in yellow and the tellurium atoms in light blue.

Figure S5. Averaged Se-Te radial distribution functions (solid line) and their integrations (dotted line) for the three Ge-Te-Se glasses derived from G_1 (black) and the three other derived from G_2 (red).


Table S1. Coordination numbers for the germanium atoms calculated on the 300K trajectories of our six Se-rich Ge-Te-Se models. First row, the three models R_{Se1-3} derived from the first heterogeneous GeSe₄ glass G_1 . Second row, the three models $R_{Se1-3'}$ derived from the second glass G_2 .


Figure S1. ⁷⁷Se ssNMR spectrum of $Ge_{20}Se_{20}Te_{60}$ acquired at 300MHz (7.1 T) using a 4 mm probe and MAS rotation conditions of 14kHz.

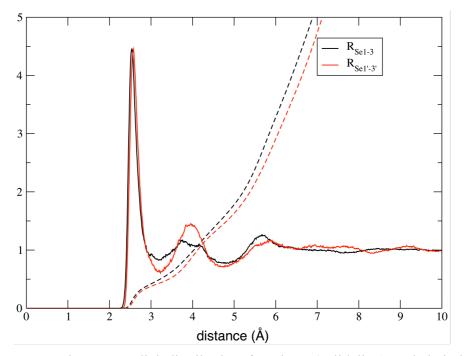

Figure S2. Histograms of the nature of the coordination numbers for the germanium atoms calculated on the 300K trajectories of our six Se-rich Ge-Te-Se models. First row, the three models (R_{Se1-3}) derived from the first heterogeneous GeSe₄ glass G_1 . Second row, the three models $R_{Se1'-3'}$ derived from the first heterogeneous GeSe₄ glass G_2 .

Figure S3. Individual radial distribution functions for our six Se-rich Ge-Te-Se glasses. The left column corresponds to the glasses derived from G_1 , and the right column from the G_2 GeSe₄ heterogeneous model.

Figure S4. Visualisation of two structures at 300K of our selenium-rich glasses derived from the G_1 (left) and G_2 (right) models together with tetrahedra for the Ge coordination spheres. (CS tetrahedra – grey, ES tetrahedra – orange). The germanium atoms are in red, the selenium atoms in yellow and the tellurium atoms in light blue.

Figure S5. Averaged Se-Te radial distribution functions (solid line) and their integrations (dotted line) for the three Ge-Te-Se glasses derived from G_1 (black) and the three other derived from G_2 (red).

Table S1. Coordination numbers for the germanium atoms calculated on the 300K trajectories of our six Se-rich Ge-Te-Se models. First row, the three models R_{Se1-3} derived from the first heterogeneous GeSe₄ glass G_1 . Second row, the three models $R_{Se1'-3'}$ derived from the second glass G_2 .

	n=3	n=4	n=5		n=3	n=4	n=5		n=3	n=4	n=5	
Ge-GeSe(n-1)						9,23		9,23				
Ge-Te2Se(n-2)		2,26		2,26								
Ge-TeSe(n-1)		9,28		9,28		8,90	0,43	9,33		6,80		6,80
Ge-Se(n)	6,83	75,69	5,46	87,98		80,91	0,46	81,37	6,51	85,79	0,37	92,67
Sum	6,83	87,23	5,46	99,52	0	99,04	0,89	99,93	6,51	92,59	0,37	99,47
	n=3	n=4	n=5		n=3	n=4	n=5		n=3	n=4	n=5	
Ge-GeSe(n-1)	n=3	n=4 1,53	n=5	1,53	n=3	n=4	n=5		n=3	n=4	n=5	
Ge-GeSe(n-1) Ge-Te2Se(n-2)	n=3		n=5		n=3	n=4	n=5	2,33	n=3	n=4	n=5	
				1,53				2,33	n=3	n=4 15,38		16,3
Ge-Te2Se(n-2)	0,02	1,53	0,11	1,53 14,00	0,83	2,33	0,56	2,33 21,04	n=3	15,38	0,92	