Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Supporting information

Solvent transport through hard-soft segmented polymer nanocomposite

Sangram K Rath^a, Saji S Edatholath^b, T. Umasankar Patro^c, Kathi Sudarshan^d, P U Sastri^c, Pradeep K Pujari^d and *G. Harikrishnan^b

^aNaval Materials Research Laboratory, Shil-Badlapur Road, Ambernath, Maharashtra, 421506, India

^bDepartment of Chemical Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India

^cDepartment of Materials Engineering, Defense Institute of Advanced Technology, Pune 411025, India

^dRadiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India

^eSolid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India

^{*} Corresponding author: hari@iitkgp.ac.in: Tel: +913222283928; Fax: +913222255303

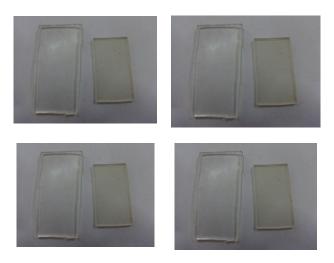


Figure S1. Photographs of films in the post equilibrium swollen (left side) and dry (right side) conditions. (a) PU; (b) PU1C; (c) PU3C; (d) PU5C

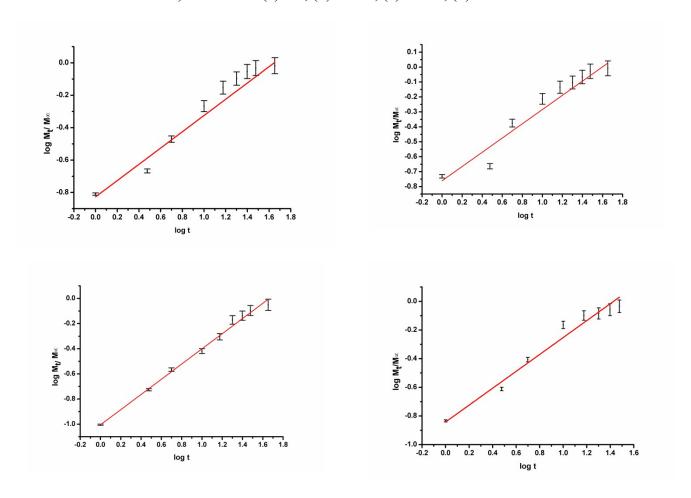


Figure S2. Plots of $log(M_t/M_\infty)$ against log t: (a) PU; (b) PU1C; (c) PU3C; (d) PU5C

Table S1. Values of n obtained from the slopes in Figure S1

Sample	n	
PU	0.51	
PU1C	0.48	
PU3C	0.58	
PU5C	0.57	

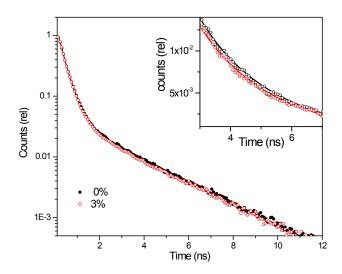


Figure S3. Sample raw spectra of positron annihilation life time spectroscope.

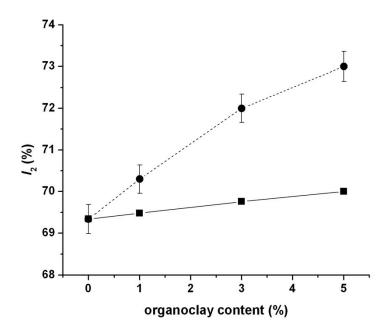


Figure S4. Second lifetime intensity as a function of clay fraction

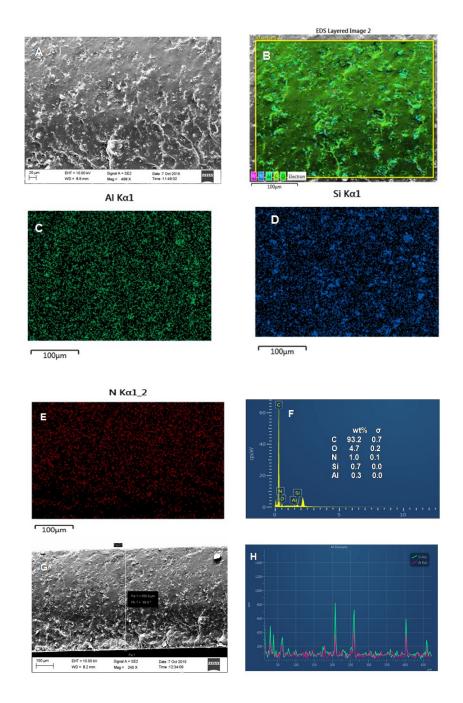


Figure S5. FESEM-EDS mapping of fractured PU5C. (A) crsoss-section morphology; (B) cross-sectional area selected for elemantal mapping; (C) EDX element mapping; (D) element Al; (E) element Si; (F) element N; (G) elemental composition; (G) a line scan of cross sectional area; (H) Al and Si composition variation as a fuction of line scan distance.

Table S2. Peak positions in small angle x-ray scattering of equilibrium swollen films.

Sample ID	Peak position (nm ⁻¹)				
	P_1^a	P_2^b	P_3^b	P_4^b	
PU	1.07	-	-	-	
PU1C	0.98	1.64	3.31	4.87	
PU3C	0.98	1.62	3.26	4.87	
PU5C	0.98	1.57	3.23	4.87	

a; P_1 assigned to long range periodicity associated with hard segment domains b: P_2 , P_3 and P_4 are assigned to d_{001} , d_{002} and d_{003} reflections, respectively from layered structure of clay.