Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

XPS characterization

Figure S1. a) Si2p and b) O1s core peaks of stalk⁺

Figure S2. O1s core peak of CB6

Figure S3. O1s core peak of NS@mSi

Figure S4. O1s core peak of NS@mSi-valve

Figure S5. ¹H DOSY NMR spectrum in D_2O of stalk⁺/CB6

Figure S6. CP-MAS ¹³C NMR spectrum of stalk⁺ [(CH₃CH₂O)₃SiCH₂NH₂(CH₂)₆NH₃]Cl₂

Figure S7. CP-MAS ¹³C NMR spectrum of CB6

2D ¹H-¹H double quantum MAS experiments:

The 2D ¹H DQ MAS spectra of the NS@mSi-stalk, stalk⁺/CB6, and NS@mSi-valve are shown in Figures S8-S10 and the chemical shifts together with the assignments are gathered in the Table S1.

For a proton A, the DQ coherence (AA or AB) obtained in the 2D spectrum will have the same horizontal frequency that it has in the 1D spectrum (v_A), but its vertical coordinate will be the sum of its frequency (v_A) and the one of the dipolar coupled proton with it ($2v_A$ for AA or v_A+v_B for AB). The peaks located on the diagonal (dashed line) correspond to the auto-correlation peaks that result from the dipolar coupling involving equivalent protons belonging to the same groups.

2D 1 H- 1 H double quantum MAS experiments typically allow to study proton proximities (within 3.5Å) 1 . However, in this case, no clear DQ correlation could be observed between the protons of the

stalk and the CB[6] molecules because of the only weak dipolar couplings between CB[6] and stalk protons (As it was observed in solution NMR with the ROESY experiment). In contrast, the strong intramolecular dipolar couplings of CB[6] and stalk protons allows the observation of the following Double Quanta Correlation (DQC).

	NS@mSi-stalk		stalk ⁺ /CB[6]		NS@mSi-valve	
Hydrogen atom	δ(ppm)	DQC	δ(ppm)	DQC	δ(ppm)	DQC
H1-CB6	5.7		5.7	H2	5.7	H2
H2-CB6	4.3		4.3	H1	4.2	H1
H3-CB6	5.6		5.6	H3	5.5	H3
a/a'- stalk	2.8-3.1	a/a', b/b', NH ₂ +/NH ₃ +	2.8	a/a', b/b', NH ₂ +/NH ₃ +	2.9-3.0 2.8	a/a', b/b', NH ₂ +/NH ₃ +
b/b'- stalk	1.5	a/a', b/b', c/c'	0.4	a/a', b/b', c/c', NH ₂ +/NH ₃ +	1.4 0.4	a/a', b/b', c/c'
c/c'- stalk	1.3	b/b', c/c'	0.4	b/b', c/c'	1.3 0.4	b/b', c/c'
d- stalk	2.6	d	2.6	d	2.6	d
NH ₂ ⁺ /NH ₃ ⁺ -stalk	7.2-7.9	a/a' , NH_2^+/NH_3^+	6.6	$a/a', NH_2^+/NH_3^+$	7.3-7.9 6.5	a/a' , NH_2^+/NH_3^+

Table S1. Chemical shifts and assignments of the 2D ¹H-¹H DQ MAS spectra of NS@mSi-stalk (a),stalk*CB6 (b), and NS@mSi-valve.

Figure S8. 2D ¹H-¹H DQ MAS spectrum of stalk⁺/CB6

Figure S9. 2D ¹H-¹H DQ MAS spectrum of NS@mSi-stalk

Figure S10. 2D ¹H-¹H DQ MAS spectrum of NS@mSi-valve

1 S. P. Brown, *Macromol. Rapid Commun.*, 2009, **30**, 688–716.