Supporting Information: Understanding the Fundamentals of Redox Mediators in Li-O₂ Batteries: A Case Study on Nitroxides

Benjamin J. Bergner,^a Christine Hofmann,^b Adrian Schürmann,^a Daniel Schröder,^a Klaus Peppler,^a Peter R. Schreiner^b and Jürgen Janek^{*a}

- a. Institute for Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff Ring 17, 35392 Giessen
- b. Institute for Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff Ring 17, 35392 Giessen

Fig. S1a) SEM image of the porous separator (Whatman GF/A) after sputter coating with platinum, obtained with a Merlin highresolution Schottky field-emission microscope (Zeiss SMT); **b**) Cyclic voltammogram of 100 mM TEMPO in 1 M LiTFSI/diglyme under argon atmosphere (p = 1 bar); obtained in a setup according to Fig. 1 with a scan speed of 5 mV s⁻¹.

Fig. S2a) Potentiostatic measurements of 100 mM TEMPO in 1 M LiTFSI/diglyme using **a)** different interelectrode distances *d* and a fixed cathodic potential E = 3.95 V vs. Li⁺/Li or **b)** different cathodic potentials *E* and a fixed interelectrode distance $d = 200 \mu$ m; all data were obtained with a GC working electrode, a LFP counter electrode and a lithium reference electrode, compare Fig. 1.

Fig. S3 Cyclic voltammograms of 10 mM **a)** TEMPO **4**, **b)** 4-methoxy-TEMPO **5**, **c)** AZADO **6**, **d)** TMAO **8** in 1 M LiTFSI/diglyme using different scan speeds; obtained in a glass cell according to 2.3 under argon atmosphere (*p* = 1 bar).

Fig. S4 Cyclic voltammograms of 10 mM **a**) TEMPO **4**, **b**) 4-methoxy-TEMPO **5**, **c**) AZADO **6**, **d**) TMAO **8** in 1 M LiTFSI/diglyme under argon and oxygen atmosphere (p = 1 bar); obtained in a glass cell according to 2.3 with a scan speed of 50 mV s⁻¹.

Fig. S5 Cycling profiles of Li-O₂ cells with 1 M LiTFSI/diglyme using $j = 0.1 \text{ mA cm}^{-2}$, $p(O_2) = 1$ bar and **a**) a fixed discharge capacity of $1000 \text{ mAh g}_{C}^{-1}$ or **b**) a fixed discharge cut-off voltage of 2.0 V; a section up to 4.2 V was selected according to the residual Li-O₂ cells with nitroxides, see Fig. S7.

Fig. S6 Cycling profiles of Li-O₂ cells with 10 mM **a)** TEMPO **4**, **b)** 4-methoxy-TEMPO **5**, **c)** TMAO **8** in 1 M LiTFSI/diglyme; obtained with j = 0.1 mA cm⁻², $p(O_2) = 1$ bar and cut-off potentials of 2.0 V resp. 4.2 V vs. Li⁺/Li. The corresponding profile of a Li-O₂ cell with pure 1 M LiTFSI/diglyme is shown in Fig S5b.

Fig. S7 Cycling profiles of Li-O₂ cells with 10 mM and 100 mM TEMPO in 1 M LiTFSI/diglyme using j = 0.1 mA cm⁻², $p(O_2) = 1$ bar and a fixed discharge capacity of $1000 \text{ mAh g}_{C}^{-1}$.

Fig. S8 XRD patterns of the carbon cathodes after discharge and charge in a Li-O₂ cell with 10 mM **a**) TEMPO **4**, **b**) 4-methoxy-TEMPO **5**, **c**) TMAO **8** in 1 M LiTFSI/diglyme; the corresponding cycling profiles are illustrated in Fig. S6. Li₂O₂ diffraction pattern matches the typical Li₂O₂ faces (ICSD 98-018-0557).