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I. COMPUTATIONAL DETAILS

A. Propagation

The total and partial absorption cross sections are calculated using Eqs. (5), (6), and (8)

of the main text, with the stationary energy component Ψλ(Q|Eph) expressed in terms of

the Green’s function,

Ψλ(Q|Eph) = ImG+(Eph)Φ0 . (1)

The advanced Green’s function is constructed for the molecular Hamiltonian (Eq. (3) of the

main text)

Ĥ = Ĥ0 − iW1 . (2)

augmented with a complex absorbing potential −iW (ReW > 0),1 approximately imposing

the outgoing boundary conditions in the asymptotic region. Here 1 denotes the 2×2 identity

matrix, and one coordinate function W is used in both electronic channels. The expression

ImG+(E)Φ0(Q) is approximated by the expansion

ImG+(E)Φ0(Q) '
Niter∑
n=0

Re[bn(E)]Φn , (3)

where bn(E) are the usual energy-dependent coefficients,2 while the Krylov vectors Φn are

found from a modified Chebyshev recursion relation due to Mandelshtam and Taylor.3

Chebyshev cross-correlation coefficients xnγjv = (χγjv|Φn) are calculated for each Krylov

vector, and the intermediate partial cross sections are reconstructed from {xnγjv} using the

Eqs. (8), (15), (16) and (17) of the main text. The number of expansion terms, Niter, is

one of the convergence parameters of the calculation. The numerical parameters of the cal-

culations are chosen as described in a previous paper:4 The Hamiltonian, Eq. (2), is set in

discrete variable representation (DVR)5 with the grid comprising 200 potential-optimized6

points in X ∈ [1.8, 10.0] a0, 140 potential-optimized points in Y ∈ [1.8, 7.0] a0, and NZ = 80

symmetry-adapted Gauss-Legendre quadrature points in angle. The grid is contracted by

retaining only points with potential energy below Vcut = 12.5 eV above equilibrium in X̃.

Niter = 25 000 Chebyshev iterations are sufficient to converge the absorption spectrum and

the partial cross sections. The complex absorbing potential −iW is set via a coordinate

dependent damping function γ(Q) (Q = X or Y ) as described in Refs. 3, 7, and 8. It
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becomes non-zero in a 1.0 a0-wide strip at the grid edge, grows quadratically as a function

of O/O2 distance inside the strip, and reaches the strength of 0.10 at the grid edge.

B. Basis functions for the calculation of Raman amplitudes

The vibrational basis states {φk(Q)} have been calculated using the potential energy

surface (PES) of the ground electronic state constructed in Ref. 9. The potential is based on

the global PES of Siebert et al.10,11 subsequently refined in Refs. 12 and 13. The employed

PES includes only one deep potential well of one stable O3 conformer. The van der Waals

wells in the asymptotic regions, giving rise to a dense spectrum of van der Waals vibrational

levels near the dissociation threshold,14,15 are eliminated.

With the chosen PES, all vibrational states for non-rotating ozone 48O3 were calculated

up to dissociation threshold using settings similar to those described in Ref. 9. The ozone

Hamiltonian ĤX̃ was set in DVR and diagonalized in a set of narrow energy windows using

Filter Diagonalization.16 The number of Chebyshev iterations used to construct the energy-

adapted basis3 was 200 000. Jacobi coordinates (X ′, Y ′, Z ′), used in the calculation, are

different from the ones described in Sect. 2 of the main text: X ′ is the distance from the

central atom to the center of mass of the two end atoms, Y ′ is the distance between the two

end atoms, and Z ′ is the angle between X′ and Y′. The grid in X ′ and Y ′ ranged from 0.1 a0

to 6 a0 and from 1.7 a0 to 8 a0, respectively; for both coordinates 78 potential optimized6

DVR points were used. The angular grid comprised 70 symmetry reduced Gauss-Legendre

grid points in the interval (0◦, 90◦); all calculated eigenstates were either symmetric or

antisymmetric with respect to the interchange of the two end atoms, Z ′ → π−Z ′. The grid

points with potential energies over 2 eV above classical dissociation threshold were discarded.

A total of 244 states (138 symmetric and 106 antisymmetric states) were found.

II. VIBRATIONALLY ADIABATIC BASIS STATES AT INTERMEDIATE

INTERFRAGMENT DISTANCES

This section illustrates the calculation of vibrationally adiabatic eigenstates at interme-

diate interfragment distances, in terms of which the intermediate distributions Pγ(j, v) are

defined.
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For a given fixed dissociation coordinate X? the local Hamiltonians Hγ(Y, Z|X?) for the

diabatic states γ = B or R read as

Hγ(Y, Z|X?) = − 1

2µY

∂2

∂Y 2
−
(

1

µXX?
2 +

1

µY Y 2

)
1

sinZ

∂

∂Z
sinZ

∂

∂Z
+ Vγ(X?, Y, Z) . (4)

Here, µX and µY are the reduced masses of O2 and O − O2, respectively. These two-

dimensional Hamiltonians are not separable for two reasons: first, the potentials Vγ(X?, Y, Z)

couple the coordinates Y and Z; second, the angular kinetic energy operator also couples Y

and Z.

The local basis in each diabatic electronic state is defined in terms of a separable ap-

proximate Hamiltonian with the eigenstates factorized into an X- and Y -dependent terms,

and the eigenenergies given by a sum of vibrational and rotational energies. The eigenstates

can be assigned the rovibrational quantum numbers (j, v) automatically, so that a visual

inspection of the two dimensional wave functions can be dispensed with. Using the separable

Hamiltonian for each diabatic electronic state, the total energy is separated into individual

local vibrational (stretching and bending) and translational contributions. Another advan-

tage of the separable approximation is that it allows one to localize the projection basis in

a single arrangement channel for arbitrary interfragment distances.

The following approximate separable Hamiltonian is used to define the local adiabatic

projection states for a given X?:

HSep
γ (X?) = − 1

2µY

∂2

∂Y 2
+ Vγ(X?, Y, Zγ,min) (5a)

−
(

1

µXX?
2 +

1

µY Y 2
γ,min

)
1

sinZ

∂

∂Z
sinZ

∂

∂Z
+ Vγ(X?, Yγ,min, Z) (5b)

−Vγ,min(X?) .

Here Vγ,min = Vγ(X?, Yγ,min, Zγ,min) is the minimum of the two-dimensional potential

Vγ(X?, Y, Z), with the coordinates {Yγ,min, Zγ,min}. The term (5a) acts only on Y , the term

(5b) acts only on Z, and the Hamiltonian is separable. The eigenfunctions are in the product

form χγjv(Y, Z) = Fγv(Y )Gγj(Z) and the respective energies are εγjv = Vγ,min + εγv + εγj.

Eigenfunctions and eigenenergies obey the following one-dimensional equations,[
− 1

2µY

∂2

∂Y 2
+ Vγ(X?, Y, Zγ,min)

]
Fγv(Y ) = (Vγ,min + εγv)Fγv(Y ) (6)
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and[
−
(

1

µXX?
2 +

1

µY Y 2
γ,min

)
1

sinZ

∂

∂Z
sinZ

∂

∂Z
+ Vγ(X?, Yγ,min, Z)

]
Gγj(Z) = (Vγ,min + εγj)Gγj(Z) .

(7)

In Eq. (7) the angular kinetic energy operators is uncoupled to the coordinate Y . Therefore

the approximate separable Hamiltonian (20) differs from the exact Hamiltonian (4) also for

X → ∞, since it neglects the centrifugal distortion. We checked that this approximation

produced little changes in the final rotational distributions, and negligible variations in the

final vibrational distributions.

The DVR grid points in X taken from the three-dimensional Chebyshev propagation of

Sect. I, have been used as X? in Eqs. (6) and (7). Equation (6) has been first solved on a

dense evenly spaced DVR grid of 400 points; next, the calculated eigenfunctions have been

interpolated to the DVR grid points in Y used in the 3D propagation. Equation (7) has

been solved directly on the Legendre DVR grid used in the 3D propagation.

The separable energies and wavefunctions are good approximations to the eigenenergies

and the wave functions of the 2D Hamiltonian (4), both in the asymptotic region (where

the fragment wavefunctions have the exact product form) and in the inner part of the

potentials. Figs. S1 and S2 compare the exact two-dimensional potential energy surfaces

with the approximate separable potential energy surfaces at two interfragment distances X?

and demonstrates the quality of the separable approximation.

The partial cross-sections can be calculated with two methods, both implemented in our

codes. The first option is to pre-select a set of distances X?, to calculate the vibrationally

adiabatic eigenfunctions using Eqs. (6) and (7), and to compute the Chebyshev cross-

correlation coefficients {xnγjv}. With this method, the distributions at a given X? can be

evaluated for an arbitrary photon energy.

The second option is to evaluate the partial cross sections for a given Eph using the fixed

energy component Ψλ(Q|Eph). This method allows one to compare different definitions, Eqs.

(16) and (17) of the main text, of the T -matrix elements at intermediate X?. The functions

fγjv are the projections 〈Ψλ
γ(X, Y, Z)|δ(X − X?)|χγjv(Y, Z|X?)〉, for which the numerical

derivatives required in Eqs. (14) and (17) of the main text, are easily evaluated using the

DVR representation of the operator ∂/∂X.

The differences between the distributions obtained with Eqs. (16) and (17) of the main
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FIG. S1. Comparison between the exact 2D surfaces (left) and the surfaces used in the separable

approximation (right) for the states B (top) and R (bottom), plotted in the (Y,Z) plane at the

dissociation distance X? = 3.56 a0. Contour energies in each frame are given in eV, relative to the

minimum of the ground electronic state X̃.

text are illustrated in Fig. S3 for two interfragment distances X?. The differences are

immaterial for large X?, and remain negligibly small in the interaction region, too.

A. Comparison between the exact and the ‘separable’ intermediate eigenenergies

In this Section, the spectrum of the approximate separable Hamiltonian, Eq. (20), is

compared with the spectrum of the full adiabatic Hamiltonian, Eq. (4). To this end, the

2D Hamiltonian, Eq. (4), for a given distance X? has been set in the basis of the separable
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FIG. S2. The same as in Fig. S1, but for the interfragment distance of X? = 4.00 a0.

wave functions {χγjv(Y, Z)} described above, and the matrix

H
(2D,γ)
jv,j′v′ = 〈Fγv(r)Gγj(θ)|Hγ(r, θ;R?)|Fγv′(r)Gγj′(θ)〉 (8)

has been diagonalized. Only wave functions with energies below a threshold energy Ethr are

included. Ethr is a parameter of the calculation.

Thus, the two dimensional wave functions at intermediate distances are found as linear

combinations of separable eigenstates,

ψ2D
γk (Y, Z) =

∑
jv

Cγk,jvFγv(Y )Gγj(Z) . (9)

For many 2D eigenstates this expression allows one to find a unique separable counterpart,

with a single leading coefficient such that |Cmax|2 > 0.5. In these cases the energy levels of

the two Hamiltonians can be directly compared. In Fig. S4 the difference between the exact

energy and the energy of the corresponding separable eigenstate (∆Eγjv) is plotted against
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FIG. S3. Comparison between the vibrational populations calculated using Eqs. (16) (histograms)

and (17) (connected dots) of the main text, for λ = 250 nm. (a): B state, X? = 3.82 a0; (b): R

state, X? = 3.82 a0; (c): B state, X? = 4.32 a0; (d): R state, X? = 4.32 a0.

the exact eigenenergy for X? = 3.78 a0. For most vibrational states in either B or R, the

differences are less than 0.04 eV, suggesting that the separable approximation is reliable also

near the conical intersection.

Additionally, we calculated the average absolute difference between the energies of the

separable and the exact two-dimensional model, with the populations of the intermediate

eigenstates taken into account:

〈∆Eγ(Eph)〉 =

∑
jv |∆Eγjv|Pγ(j, v|Eph)∑

jv Pγ(j, v|Eph)
. (10)

The sums include only the eigenstates with |Cmax|2 > 0.5, assigned to particular quantum

numbers (j, v). The average differences 〈∆EB〉 and 〈∆ER〉 are shown in Fig. S5 against the

photon energy, which enters Eq. (10) through the Eph dependent intermediate populations.
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∆
γ

∆
γ

FIG. S4. Difference between the energies of the exact two-dimensional Hamiltonian and the

approximate separable one, plotted against the energy. The intermediate distance is X? = 3.78 a0.

The left (right) panel shows the eigenenergies of the B (R) state. The dots have different colors

according to the value of the maximum absolute square of the coefficient in the expansion (9),

namely black for |Cmax|2 > 0.9, red for 0.8 < |Cmax|2 ≤ 0.9, blue for 0.7 < |Cmax|2 ≤ 0.8, green for

0.6 < |Cmax|2 ≤ 0.7 and magenta for 0.5 < |Cmax|2 ≤ 0.6. The two-dimensional eigenstates with

large |Cmax|2 are better reproduced by the approximate separable eigenstates.

Although the differences ∆EB,R increase with the photon energy, they remain below 0.025

eV.

∆
γ

FIG. S5. Average absolute difference between the exact (2D) and the separable energies of the

intermediate eigenstates (X? = 3.78 a0), Eq. (10), plotted against the photon energy, for the B

and the R states.
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III. RELATIVE ELECTRONIC POPULATIONS VERSUS THE

INTERFRAGMENT DISTANCE X

The intermediate distributions in the main text are constructed for interfragment dis-

tances X? located in the vicinity of the conical intersection between the states B and R. The

distances, defining this ‘vicinity’, can be found, for example, by following the population of

the initially empty R state as a function of X: Significant population transfer into the R

state at a certain X signals that one has reached a dynamically significant B/R crossing

region. The relative population

〈Ψλ
R|δ(X −X?)|Ψλ

R〉∑
γ=B,R〈Ψλ

γ |δ(X −X?)|Ψλ
γ〉

of the R state is plotted in Fig. S6 as a function of X.

λ
λ
λ
λ

FIG. S6. Population of the R state as a function of the interfragment distance for four different

photon wavelengths. The gray strip highlights the region of the conical intersection, and it is

centered at the distance of the minimum of the crossing seam.

Since only the B state is initially excited, the population is close to zero for the O—O2

distances smaller than 3.5 a0. The asymptotic value is reached for R > 4.5 a0; most of

the population transfer occurs in the shaded region between 3.75 a0 and 4.0 a0, where the

conical intersection is located. The asymptotic quantum yield for the R channel increases

with increasing photon energy and ranges between 5% (at λ = 266 nm) and 8% (at λ = 226

nm).
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IV. LANDAU-ZENER RECONSTRUCTION OF THE INTERMEDIATE

VIBRATIONAL DISTRIBUTIONS FOR DIFFERENT PHOTON ENERGIES

Figure S7 shows the intermediate O−O vibrational distributions in the R state, calcu-

lated using the Landau-Zener model (Eq. (21) of the main text), compared to the quantum

mechanical distributions obtained directly from T -matrix elements. The distributions for

Eph = 5.49 eV are shown in Fig. 2(b) of the main text; Fig. S7 shows the results for several

other photon energies. The extension of the distributions toward high v with increasing

Eph is perfectly reproduced by the Landau-Zener model. The accuracy of the model is the

highest for large photon energies and somewhat decreases for decreasing Eph.

The quality of the state-averaged LZ model presented in Fig. S7 is influenced by the

differences between the vibrationally adiabatic eigenstates in the electronic states B and R.

Indeed, Eqs. (23) and (24) of the main text describe the internal conversion as a ‘jump’ from

the rovibronic state (B, j, v) to the rovibronic state (R, j, v) with a Landau-Zener probability

wLZ
jv . It is explicitly assumed that the vibrational quantum numbers (j, v) do not change

as the molecule undergoes an electronic transition and, moreover, the vibrational wave

functions in both electronic states are identical. This assumption is valid, by definition, at

every point along the crossing seam. However, it can be violated if X? is chosen in a broad

vicinity of the crossing, where the two states are not strictly degenerate. In this case, the

validity of the simple state-averaged Landau-Zener model strongly depends on how similar

the potentials and the vibrational eigenstates of the B and R states in the (Y, Z) plane are.

Suppose for example that in the crossing region the minima of the potentials VB(X?, Y, Z)

and VR(X?, Y, Z) lie in two different regions of the (Y, Z) plane. The vibrational wave

functions in B and R are localized in the respective regions and only partially overlap, and

the Gaussian of the (B, 0, 0) state is shifted relative to the Gaussian of the (R, 0, 0) state. In

the state-averaged Landau-Zener model the transition probability between these two states

is given by the Massey parameter ξ00 evaluated using only one of the two Gaussians. The

second Gaussian and the overlap of the two functions are ignored.

In the vicinity of the B/R crossing, the equilibrium O—O distance is essentially the same

for the states B and R. In contrast, the minimum along the angle Z in the R state is displaced

relative to the B state by nearly 30◦ (see Figs. S1 and S2). The impact, which this angular

displacement has on the state-averaged LZ model, is illustrated in Fig. S8, which compares
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FIG. S7. Normalized quantum mechanical vibrational distributions in the short O—O bond

stretch in the R state evaluated at X? = 3.90 a0, for different photon energies (filled histograms).

The same distributions reconstructed using the state-averaged Landau-Zener model are shown with

empty histograms. The blue dots indicate the B state distribution PB(j, v) at X? = 3.90 a0, used

in Eq. (22) of the main text as incident distribution (the population for v = 0 is out of scale).

in the (j, v) plane the quantum mechanical intermediate distribution in the R state, PR(j, v),

with the distribution P LZ
R (j, v) reconstructed from the incident distribution PB(j, v) via

P LZ
R (j, v) = PB(j, v)wLZ

jv (B→ R) . (11)

Each (j, v) state is represented by a dot whose color varies from yellow (unpopulated state),

through green (low population) and light blue (medium population) to dark blue (large

population). Only open intermediate channels are shown in Fig. S8.

Only a relatively small fraction of the allowed channels is appreciably populated in the

R state, and the corresponding black dots trace a nearly straight line passing between
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FIG. S8. Intermediate (j, v) distributions for a photon energy Eph = 5.49 eV. (a) Population

calculated using the quantum mechanical T -matrix elements, PR(j, v), at X? = 3.90 a0; (b)

Population PLZ
R (j, v) calculated using the ‘diagonal’ Landau-Zener model described in the main

text. Yellow color corresponds to P (j, v) < 0.002, green to 0.002 < P (j, v) < 0.007, blue to

0.007 < P (j, v) < 0.018, black to P (j, v) > 0.018.

(v = 5, j = 28) and (v = 12, j = 20). The state-average LZ model correctly reproduces the

O—O vibrational distribution along the v-axis. In contrast, the population maximum along

the j-axis is shifted in P LZ
R (j, v) to lower j values. The formal reason for this is the shape

of the incident distribution PB(j, v): While the populated v-levels in the B state span the

range 0 ≤ v ≤ 15, the population of states with the bending quantum number j > 20 is

very low. As a result, these states are missing in the distribution P LZ
R , reconstructed using

the state-averaged LZ model. Because the potential minimum along the bending mode Z

is displaced in the R state to smaller angles relative to the B state, the vibrational states

(B, j, v) with low j < 20 are expected to have substantial projection coefficients onto the

bending states (R, j, v) with j > 20. In other words, the B/R transitions in the basis of the

two vibrational manifolds are non-diagonal. The ‘diagonal’ state-averaged Landau-Zener

model takes into account only the individual probability of transfer from the state (B, j, v),

and not the redistribution of the population in the manifold of (R, j, v) states.

A ‘non-diagonal’ extension of Eq. (11), where also the rovibrational levels of the R states

are considered, requires a solution of a multistate Landau-Zener problem, with all diabatic

coupling matrix elements 〈χRj′v′(Y, Z|X?) |VBR(X?, Y, Z)|χBjv(Y, Z|X?)〉 taken into account.
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A rigorous approach can be based on a detailed semiclassical analysis of the close coupling

equations set in the appropriate vibronic basis.17–21 This extension lies beyond the scope

of the present study, in which the non-adiabatic problem is solved fully quantum mechani-

cally, and will be discussed elsewhere. The attractive feature of the approximate ‘diagonal’

approximation is that it leads to a practically useful relation ξeff = − ln(1 − PR(v)/PB(v))

used in the main text to reconstruct the v-dependence of the Massey parameter from the

intermediate vibrational distributions (see discussion after Eq. (23) of the main text).

V. RAMAN WAVE FUNCTIONS

The Raman wave functions in both electronic channels γ are shown in Fig. S9 in Jacobi

coordinates (X, Y ) for the incident photon energies Eph = 4.96 eV and Eph = 5.49 eV (corre-

sponding to the photolysis wavelengths of λI = 250 nm and λI = 226 nm). They are filtered

out of the initial wave packet Φ0 according to Eq. 6 of the main text (see also Ref. 4).

The Raman wave functions provide a detailed illustration of the mechanism by which

the coupling mode Y becomes excited along the adiabatic path. Indeed, the probability

maxima in the asymptotic channels of both electronic states trace out clearly visible short-

bond oscillations resembling the familiar quasi-classical trajectories for vibrationally excited

products. In the optically bright B state, the oscillations have small amplitude and are

caused not so much by the passage through the intersection (which has no visible effect on

the wave function) as by a slight difference in the equilibrium bond lengths in the parent

molecule and the O2 fragment. In the R state, the molecules emerge in the intersection

region with a visibly stretched O2 bond, and this quantum mechanical over-stretching of the

coupling mode is the ‘mechanistic’ origin of the inverted vibrational distributions created

upon the adiabatic passage through the conical intersection.
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(a) B state, λI = 250 nm (b) R state, λI = 250 nm

(c) B state, λI = 226 nm (d) R state, λI = 226 nm

FIG. S9. Electronic components of the Raman wavefunctions in the B state (left panels) and in

the R state (right panels) for λI = 250 nm (top) and λI = 226 nm (bottom), corresponding to

photon energies of Eph = 4.96 eV and Eph = 5.49 eV, respectively. The probability distributions

|Ψλ
γ |2, integrated over the angle Z, are shown as 3D plots in the (X,Y ) plane. In each panel, the

contour maps of the diabatic B and R potentials taken at Z = 134◦ are plotted in the (X,Y ) plane.

The shaded green strip highlights the B/R intersection region, and the crossing seam is marked

with a tick line.
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