A Multi-Nuclear Magnetic Resonance And Density Functional Theory Investigation Of Epitaxially Grown ${\rm InGaP}_2$

P. J. Knijn, P. J. M. van Bentum, C. M. Fang, G. J. Bauhuis, G. A. de Wijs* and A. P. M. Kentgens*

Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands. E-mail: g.dewijs@science.ru.nl, a.kentgens@nmr.ru.nl

Table S1: Calculated and experimental lattice constants a in 10^{-10} m. ^aExperimental numbers from: http://www.ioffe.ru/SVA/NSM/Semicond/index.html. ^bBased on pure compounds, assuming linear scaling of a with composition.

	PBE	exp.
GaP	5.51	$5.4505^{\rm a}$
$InGaP_2$	5.73	5.6596^{b}
InP	5.96	$5.8687^{\rm a}$

Table S2: Standard deviations of Ga and In isotropic chemical shifts in ppm calculated for the disordered model for four different lattice constants a. The numbers for $a = 5.6596 \times 10^{-10}$ m are reported in the main text in Table 4. The relaxed lattice constant is 5.73×10^{-10} m. See Table S4 for details.

In	25.4	20.3	19.2	16.9
Ga	10.1	8.9	8.6	7.8
$a (10^{-10} \text{ m})$	5.4505	5.6596	5.73	5.8687

Table S3: Calculated isotropic ³¹P chemical shifts in ppm at the PBE optimized lattice constants (a[PBE]) and the experimental lattice constants (a[exp.]) from Table S1. The ³¹P shifts are referenced such that $\delta_{iso} = -142$ ppm for bulk GaP at its experimental lattice constant.

	a[PBE]	$a[\exp.]$
GaP	-113.6	-142.0
InP	-120.6	-160.9

Figure S1: ³¹P isotropic chemical shifts for bulk GaP and InP (black dots) as a function of the nearest neighbour distance. The lines are guides to the eye. Vertical dashed [dotted] lines indicate the experimental [calculated PBE] bulk GaP (left) and InP (right) lattice constants. Diamonds: ³¹P isotropic chemical shifts versus average nearest neighbour distance for the 32 P nuclei in the In_{0.5}Ga_{0.5}P disordered model, with $a = 5.4505 \times 10^{-10}$ m (green), $a = 5.6596 \times 10^{-10}$ m (blue, reported in Figure 9 in main text), $a = 5.73 \times 10^{-10}$ m (grey, relaxed lattice constant), and $a = 5.8687 \times 10^{-10}$ m (red). Coordinations P[Ga_nIn_{4-n}], diamonds: n = 4, squares: n = 3, circles: n = 2, triangles: n = 1, solid diamonds: n = 0. All ³¹P shifts are referenced such that $\delta_{iso} = -142$ ppm for bulk GaP at its experimental lattice constant. The shifts of the random models are listed in Table S4.

Table S4: Calculated ³¹P chemical shifts δ_{iso} in ppm for various coordinations P[Ga_nIn_{4-n}] for the random model for three different lattice constants *a*. Data for all 32 nuclei are listed. The periodically repeated cell has dimensions $2a \times 2a \times 2a$. Atomic positions were relaxed. The cells were kept fixed. The ³¹P shifts are referenced such that $\delta_{iso} = -142$ ppm for bulk GaP at its experimental lattice constant.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		014.07	07.00	FQ OF	24.82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P[Ga_4]$	-214.67	-97.63	-56.85	24.32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-207.62	-92.43	-52.37	26.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P[Ga_3In_1]$	-219.10	-114.90	-81.67	-10.52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-224.75	-112.39	-92.01	-25.80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-215.79	-116.02	-78.16	-7.21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-219.09	-118.44	-77.08	-9.44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-216.36	-116.72	-80.97	-13.98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-227.29	-126.99	-81.68	-14.80
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-229.47	-115.45	-80.31	-15.24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P[Ga_2In_2]$	-240.30	-144.63	-103.35	-39.22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-250.87	-141.03	-107.67	-41.14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-249.65	-137.65	-108.43	-42.30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-259.23	-135.24	-122.21	-59.93
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-238.61	-132.54	-102.26	-36.64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-234.43	-143.34	-102.26	-41.67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-227.72	-136.42	-100.44	-41.61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-243.37	-142.93	-106.13	-41.89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-246.29	-143.58	-108.44	-44.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-240.18	-156.21	-106.34	-43.84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-250.01	-140.14	-106.09	-45.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-242.16	-138.87	-109.88	-45.43
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-237.14	-140.58	-107.31	-44.79
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	P[Ga ₁ In ₃]	-259.04	-172.91	-135.19	-82.29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-257.79	-170.55	-136.16	-80.86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-255.89	-166.87	-142.70	-89.48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-261.12	-162.34	-139.91	-84.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-268.48	-163.38	-137.16	-83.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-265.75	-168.24	-130.99	-73.95
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-265.02	-163.43	-131.87	-74.39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-257.82	-164.82	-135.65	-76.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-259.87	-167.17	-132.37	-75.24
$a (10^{-10} \text{ m}) = 5.4505 = 5.6596 = 5.73 = 5.8687$	$P[In_4]$	-282.15	-193.49	-165.47	-117.60
	$a (10^{-10} \text{ m})$	5.4505	5.6596	5.73	5.8687

Table S5: ³¹P isotropic chemical shifts calculated at the PBE optimized lattice constant (5.73 × 10^{-10} m) in ppm compared to experiment. ³¹P is referenced such that its shift is -142 ppm for GaP at the PBE-optimized lattice constant $a = 5.51 \times 10^{-10}$ m.

		experiment		random supercell
	n	W20	W50	
P[Ga ₄]	4	-86.6	-87.2	-83
$P[Ga_3In_1]$	3	-109.2	-110.2	-110
$P[Ga_2In_2]$	2	-135.3	-136.4	-135
$P[Ga_1In_3]$	1	-162.2	-164.7	-164
$P[In_4]$	0	-191.2	-194.7	-194