Supplementary material for

## Artificial evolution of metal-free coumarin dyes for dye sensitized solar cells

Vishwesh Venkatraman, Sailesh Abburu, and Bjørn Kåre Alsberg

| Molecule | Structure | $J_{sc}$ | $V_{oc}$ | FF    | PCE   | $\lambda_{max}$ |
|----------|-----------|----------|----------|-------|-------|-----------------|
| C01 [5]  |           | 4.1      | 410      | 0.56  | 0.9   | 442             |
| C02 [11] |           | 2.18     | 550      | 0.69  | 1.03  | 445             |
| C03 [10] |           | 14.2     | 600      | 0.7   | 6.07  | 532             |
| C04 [10] |           | 10.5     | 620      | 0.57  | 3.73  | 509             |
| C05 [10] |           | 13.3     | 570      | 0.56  | 4.37  | 527             |
| C06 [9]  |           | 14.3     | 580      | 0.72  | 5.97  | 507             |
| C07~[9]  |           | 13.3     | 560      | 0.68  | 5.03  | 520             |
| C08 [7]  |           | 2.461    | 491      | 0.635 | 0.767 | 450             |
| C09 [7]  |           | 2.082    | 501      | 0.614 | 0.64  | 448             |

Table S1: Photovoltaic properties for the coumarin dyes investigated in this study. In the "Molecule" column, names in italics indicate test set molecules.

| Molecule  | Structure | $J_{sc}$ | $\frac{V_{oc}}{V_{oc}}$ | FF    | PCE   | $\lambda_{max}$ |
|-----------|-----------|----------|-------------------------|-------|-------|-----------------|
| C10 [7]   |           | 1.081    | 502                     | 0.66  | 0.358 | 454             |
| C11 [7]   |           | 1.754    | 441                     | 0.683 | 0.528 | 451             |
| C12 $[7]$ |           | 0.936    | 490                     | 0.651 | 0.299 | 475             |
| C13 [7]   |           | 1.912    | 470                     | 0.69  | 0.581 | 454             |
| C14 $[2]$ |           | 10.95    | 650                     | 0.68  | 4.54  | 429             |
| C15 [2]   |           | 9.44     | 650                     | 0.7   | 4.34  | 431             |
| C16 [2]   |           | 9.87     | 640                     | 0.69  | 4.44  | 450             |
| C17 [8]   |           | 13.47    | 610                     | 0.68  | 5.53  | 507             |

Table S1 – Continued from previous page

| Molecule  | Structure | $J_{sc}$ | $\frac{V_{oc}}{V_{oc}}$ | FF   | PCE  | $\lambda_{max}$ |
|-----------|-----------|----------|-------------------------|------|------|-----------------|
| C18 [8]   |           | 10.5     | 561                     | 0.68 | 4.02 | 478             |
| C19 [8]   |           | 7.61     | 508                     | 0.7  | 2.74 | 467             |
| C20 [5]   |           | 7.5      | 490                     | 0.7  | 2.6  | 539             |
| C21 [5]   |           | 15.2     | 550                     | 0.62 | 5.2  | 507             |
| C22~[5]   |           | 9.4      | 500                     | 0.65 | 3.1  | 477             |
| C23 $[5]$ |           | 12.9     | 500                     | 0.64 | 4.1  | 493             |
| C24 [5]   |           | 12.8     | 480                     | 0.6  | 3.7  | 486             |

Table S1 – Continued from previous page

| Molecule  | Structure | $J_{sc}$ | $\frac{V_{oc}}{V_{oc}}$ | FF   | PCE | $\lambda_{max}$ |
|-----------|-----------|----------|-------------------------|------|-----|-----------------|
| C25  [5]  |           | 11.1     | 510                     | 0.6  | 3.4 | 451             |
| C26 [5]   |           | 2.7      | 340                     | 0.63 | 0.6 | 616             |
| C27~[5]   |           | 4.5      | 380                     | 0.63 | 1.1 | 578             |
| C28 [5]   |           | 13.2     | 530                     | 0.67 | 4.7 | 480             |
| C29 $[5]$ |           | 15.1     | 470                     | 0.5  | 3.5 | 506             |
| C30 [6]   |           | 12.1     | 660                     | 0.73 | 5.8 | 507             |
| C31 [4]   |           | 14.89    | 580                     | 0.73 | 6.3 | 507             |
| C32~[6]   |           | 15.6     | 660                     | 0.7  | 7.2 | 511             |
| C33 [6]   |           | 14.3     | 700                     | 0.64 | 6.4 | 501             |

Table S1 – Continued from previous page

| Molecule  | Structure | $J_{sc}$ | $\frac{1}{V_{oc}}$ | FF   | PCE  | $\lambda_{max}$ |
|-----------|-----------|----------|--------------------|------|------|-----------------|
| C34 [12]  |           | 15       | 620                | 0.69 | 6.4  | 525             |
| C35 [14]  |           | 16.1     | 600                | 0.69 | 6.7  | 492             |
| C36 [13]  |           | 14.32    | 510                | 0.73 | 5.3  | 566             |
| C37 [12]  |           | 18.8     | 530                | 0.65 | 6.5  | 553             |
| C38 [1]   |           | 9        | 800                | 0.76 | 5.5  | 454             |
| C39 [1]   |           | 12.2     | 695                | 0.74 | 6.2  | 460             |
| C40 [1]   |           | 13.2     | 678                | 0.67 | 6    | 465             |
| C41 [3]   |           | 5.63     | 660                | 0.7  | 2.6  | 420             |
| C42 $[3]$ |           | 3.33     | 580                | 0.73 | 1.41 | 449             |

Table S1 – Continued from previous page

| Molecule   | Structure | $J_{sc}$ | $\frac{V_{oc}}{V_{oc}}$ | FF   | PCE  | $\lambda_{max}$ |
|------------|-----------|----------|-------------------------|------|------|-----------------|
| C43 [3]    |           | 5.79     | 690                     | 0.7  | 2.8  | 413             |
| C44 $[3]$  |           | 4.03     | 600                     | 0.73 | 1.77 | 425             |
| C45 $[3]$  |           | 7.72     | 660                     | 0.71 | 3.62 | 438             |
| C46 $[3]$  |           | 3.41     | 560                     | 0.73 | 1.39 | 465             |
| C47 $[15]$ |           | 9.52     | 540                     | 0.65 | 3.36 | 489             |
| C48 [15]   |           | 12.91    | 590                     | 0.61 | 4.59 | 492             |
| C49 $[15]$ |           | 14.33    | 690                     | 0.63 | 6.24 | 473             |

Table S1 – Continued from previous page

Figure F1: Scores plot for the 3 component PLSR model. The points have been coloured according to the  $\mathbf{J_{sc}} \times \mathbf{V_{oc}}$  values and the size of the sphere is an indication of the magnitude.



| Molecule     | $\lambda_{\max}$ | M062X/6-31G(d,p) | M062X/DGDZVP | CAM-B3LYP/DGDZVP |
|--------------|------------------|------------------|--------------|------------------|
| C343[5]      | 442              | 364.89           | 371.07       | 369.6            |
| JK-34[2]     | 429              | 435.35           | 440.88       | 433.87           |
| JK-35[2]     | 431              | 454.24           | 461.31       | 459.1            |
| JK-36[2]     | 450              | 478.25           | 486.09       | 483.66           |
| NKX-2195[5]  | 539              | 478.37           | 482.36       | 475.21           |
| NKX-2311[5]  | 507              | 481.7            | 489.9        | 483.98           |
| NKX-2384[5]  | 477              | 435.29           | 447.23       | 442.66           |
| NKX-2388[5]  | 493              | 440.66           | 446.65       | 441.93           |
| NKX-2393[5]  | 486              | 463.8            | 473.14       | 467.22           |
| NKX-2398[5]  | 451              | 406.54           | 406.54       | 402.34           |
| NKX-2510[5]  | 480              | 469.47           | 477.48       | 471.85           |
| NKX-2586[5]  | 506              | 509.87           | 518.67       | 511              |
| NKX-2587[6]  | 507              | 474.83           | 481.76       | 477.1            |
| NKX-2593[4]  | 507              | 517.75           | 529.11       | 521.55           |
| NKX-2677[6]  | 511              | 503.99           | 512.31       | 507.85           |
| NKX-2697[6]  | 501              | 519.68           | 530.15       | 526.25           |
| NKX-2700[12] | 525              | 532.99           | 545.4        | 538.9            |
| NKX-2753[14] | 492              | 488.78           | 496.75       | 487.58           |
| NKX-2807[13] | 566              | 391.59           | 398.05       | 385.3            |
| NKX-2883[12] | 553              | 397.64           | 404.58       | 406.73           |

Table S2: Comparison of different TD-DFT functionals for selected coumarin molecules.



Table S3: Molecular modifications made to dye M01.

## References

- L. Alibabaei, J.-H. Kim, M. Wang, N. Pootrakulchote, J. Teuscher, D. Di Censo, R. Humphry-Baker, J.-E. Moser, Y.-J. Yu, K.-Y. Kay, S. M. Zakeeruddin, and M. Grätzel. Molecular design of metal-free d-[small π]-a substituted sensitizers for dye-sensitized solar cells. *Energy Environ. Sci.*, 3:1757–1764, 2010.
- [2] H. Choi, C. Baik, H. J. Kim, J.-J. Kim, K. Song, S. O. Kang, and J. Ko. Synthesis of novel organic dyes containing coumarin moiety for solar cell. *Bull. Korean Chem. Soc.*, 28(11):1973–1979, 2007.
- [3] L. Han, H. Wu, Y. Cui, X. Zu, Q. Ye, and J. Gao. Synthesis and density functional theory study of novel coumarin-type dyes for dye sensitized solar cells. J. Photoch. Photobio., A, 290(0):54 – 62, 2014.
- [4] K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. *New J. Chem.*, 27:783–785, 2003.
- [5] K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa. Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B, 107(2):597–606, 2003.
- [6] K. Hara, Z.-S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-oh, C. Kasada, A. Shinpo, and S. Suga. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. *J. Phys. Chem. B*, 109(32):15476–15482, 2005.
- [7] V. Kandavelu, H.-S. Huang, J.-L. Jian, T. C.-K. Yang, K.-L. Wang, and S.-T. Huang. Novel iminocoumarin dyes as photosensitizers for dye-sensitized solar cell. *Solar Energy*, 83(4):574 581, 2009.
- [8] B. Liu, R. Wang, W. Mi, X. Li, and H. Yu. Novel branched coumarin dyes for dye-sensitized solar cells: significant improvement in photovoltaic performance by simple structure modification. J. Mater. Chem., 22:15379–15387, 2012.

- [9] K. D. Seo, I. T. Choi, Y. G. Park, S. Kang, J. Y. Lee, and H. K. Kim. Novel  $d a \pi a$  coumarin dyes containing low band-gap chromophores for dye-sensitised solar cells. *Dyes Pigments*, 94(3):469–474, 2012.
- [10] K. D. Seo, H. M. Song, M. J. Lee, M. Pastore, C. Anselmi, F. D. Angelis, M. K. Nazeeruddin, M. Grätzel, and H. K. Kim. Coumarin dyes containing low-band-gap chromophores for dye-sensitised solar cells. *Dyes Pigments*, 90(3):304 310, 2011.
- [11] S. Verma and H. N. Ghosh. Tuning interfacial charge separation by molecular twist: A new insight into coumarin-sensitized tio2 films. J. Phys. Chem. C, 118(20):10661–10669, 2014.
- [12] Z.-S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, and K. Hara. Thiophenefunctionalized coumarin dye for efficient dye-sensitized solar cells: Electron lifetime improved by coadsorption of deoxycholic acid. J. Phys. Chem. C, 111(19):7224–7230, 2007.
- [13] Z.-S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, and K. Hara. Molecular design of coumarin dyes for stable and efficient organic dye-sensitized solar cells. *J. Phys. Chem. C*, 112(43):17011–17017, 2008.
- [14] Z.-S. Wang, K. Hara, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, H. Arakawa, and H. Sugihara. Photophysical and (photo)electrochemical properties of a coumarin dye. J. Phys. Chem. B, 109(9):3907–3914, 005.
- [15] C. Zhong, J. Gao, Y. Cui, T. Li, and L. Han. Coumarin-bearing triarylamine sensitizers with high molar extinction coefficient for dye-sensitized solar cells. J. Power Sources, 273(0):831 – 838, 2015.