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Unusual liquid-liquid phase transition in aqueous mixtures of a well-
known dendrimer.
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S1 Composition of ternary dendrimer-salt-water systems

Ternary mixtures were prepared by weight, and the dendrimer and salt weight fractions, w,, and
wy, were calculated. These weight fractions were then converted into dendrimer volume
fraction, ¢, and salt molar concentration, C, after estimating the sample density using the

known'! volumetric properties of binary sodium sulfate-water solutions and used the dendrimer

specific volume specific volume? of 0.817 g cm assumed to be constant.

Sample density was estimated in the following way. Salt molality, m,, was calculated from
mg =1000(wg / M¢)/ (1-ws—wp)

where M =142.037gmol™'. The density dy of the corresponding binary salt-water solution was

calculated from the literature expression d(my) :!

dy/gem™ =0.997045 +
10.129483 (mg / m®) —0.0086616 (m, / m®)" —0.0061207(mg / m")* +0.0007909 (mg / m°)>*

where m” =1molkg™". The specific volume, v

soln »

of the ternary dendrimer-salt-water solution

was the calculated using the following expression:

\%

soln

=wp Vp + (L= wy,) / dg(mg)



where v, is the dendrimer specific volume reported above.? Dendrimer volume fraction and salt
molar concentrations were then calculated using

¢D = WD vD /vsoln

C, =1000(wg / M) /v

soln

S2. LLPS experimental data

Tables S1. LLPS temperature (7,,) as a function of salt molar concentration (Cs) at several

dendrimer volume fractions (¢p) obtained from turbidity experiments.

Table Sla. T, at ¢,=0.38 Table Slg. T}, at ¢,=0.14

b CsM | Tu°C & CsM | T,/°C
0.384 | 0.289 4.0 0.140 | 0.691 36
0383 | 0305 [ 132 0.142 | 0.690 32
0384 | 0309 | 165 0.143 | 0.690 28

0.384 0.313 19.6
0.383 0.320 24.8
0.383 0.336 342

Table S1b. T, at ¢,=0.29 Table S1h. T, at ¢,=0.084

oo Cs/M T/°C oo CsM T,/°C
0.292 0.372 9.4 0.0834 0.806 33.2
0.291 0.374 12.5 0.0835 0.814 27.6
0.291 0.377 15.0 0.0836 0.822 22.9
0.291 0.378 17.8 0.0835 0.830 17.8
0.291 0.380 21.8 0.0835 0.837 13.8
0.291 0.385 29.8

Table Slc. 7, at ¢p=0.27 Table S1i. 7, at #p=0.049

o Cs/M T/°C &o Cs/M T/°C
0.265 0.412 4.8 0.0492 | 0.958 354
0.266 0.413 10.0 0.0495 | 0.964 314
0.266 0.415 21.0 0.0492 | 0.970 28.2
0.267 0.417 42.0 0.0493 | 0.974 26.6
0.0493 | 0.978 24.4

Table S1d. 7}, at ¢,=0.24 Table S1j. T}, at ¢,=0.00126



b CsM | Tu°C & CsM | Tu°C
0237 | 0475 02 0.0125 | 0994 | 368
0.235 | 0.477 3.2 0.0127 | 1.002 | 334
0235 | 0484 | 124 0.0125 | 1.010 | 304
0234 | 048 | 12.8 0.0126 | 1.022 | 253

0.0127 1.026 23.0

Table Sle. T}, at ¢p=0.22 Table S1k. Ty, at ¢,=0.0096
b CsM | T°C & CsM | T,/°C
0224 | 0500 | -44 0.0096 | 1.267 | 35.0
0.224 | 0.501 2.0 0.0096 | 1.269 | 34.0
0223 | 0.504 0.8 0.0096 | 1271 [ 32.0
0223 | 0.507 5.0 0.0097 | 1271 [ 320
0223 | 0.508 9.2 0.0096 | 1274 | 30.0
Table S1f. T, at ¢,=0.21 Table S11. T, at ¢,=0.0091
b CsM | Tu°C & CsM | T°C
0208 | 0526 | -8.0 0.0092 | 1.384 | 32.0
0208 | 0527 | -5.8 0.0091 | 1387 | 27.0
0208 | 0529 [ 25 0.0091 | 1392 [ 26.0
0208 | 0.531 0.4 0.0091 | 1396 | 20.0
0.0091 | 1.401 19.0

Estimation of dendrimer critical volume fraction from salt-dendrimer partitioning data.
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Figure S1. Plots of (¢ +#5")/2 as a function of | 4" — 4 |, where f=0.325 and f=0.5
are the Ising (A) and mean-field (B) exponents, respectively. Linear extrapolation to

143" — 4% |"7=0 yield estimates of the critical volume fraction, ¢ .



Estimation of the partitioning coefficient, (0C, / 04, ), , from salt-dendrimer partitioning data.
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Figure S2. Plots of AC, / Ad, as a function of | 4" =4 |'"”, where £=0.325 and f=0.5 are

the Ising (A) and mean-field (B) exponents,

respectively. Linear

143" — 45 |"”=0 yield estimates of the critical partitioning coefficient, (8Cy / d¢,), .

Estimation of the partitioning coefficient, (0C, / 04, ), , from the experimental binodal curve.
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Figure S3. Plot of C as a function of ¢, from binodal data at 25 °C.
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S3. Thermodynamic model

We consider a ternary dendrimer-salt-water system of volume, V', in equilibrium with an
infinitely large reservoir consisting of a binary salt-water system through a membrane not
permeable to dendrimer particles. The thermodynamic properties of the reservoir are fixed at

constant temperature. We denote as I1 the pressure difference between the two compartments.
This is the osmotic-pressure contributions due to the dendrimer particles. To determine IT , we

treat the dendrimer solution as a suspension of N dendrimer gas particles. The corresponding

canonical partition function, Q, is given by?

_ 1 (g ! () kT
Q_ﬁ(Fj ldre (S1)

where k, is the Boltzmann constant, V' is the volume of the system, A is the particle thermal
wavelength, ¢, it the particle internal partition function, r collectively represents the 3N

spatial coordinates of the N particles and w(r) is the potential of mean force, which is given by:
w(r) = Wpp () + Wpg (1) (52)

where wp,(r) is the potential contribution associated with dendrimer-dendrimer interaction in
the absence of bulk domain, with wy;(0) =0, where “oo’ denotes that all particle-particle
distances are infinitely large. The remaining contribution in Eq. S2, w,(r), describes the effect

of salt on dendrimer-dendrimer interactions. Using Eq. S2, Eq. S1 can be rewritten in the

following way:

Q _ QD <e—wDS(r)/kBT> (S3)
with
Q = L(h}j\[ Jdr e_WDD(l')/kBT (S4)
b =
NI\A ) S



dr e—wDD (r)/kBTeﬂAuDS (r)/kgT

—wps(r)/kgT \ _ V.
<e >_ J.dr oo (1)/kyT (S5)
V
The osmotic pressure of the dendrimer particles is given by
aln e’WDs(r)/kBT
H=kBT(aanj =TI, +k,T < ) (S6)
o ey oV
T.N

where 1, =k, T(0InQ, /0V), , . We start by considering the osmotic pressure of the dendrimer
particles in the absence bulk domain (w4 = 0). Here, we propose the following type of equation
of state:

I—‘[DvD
k,T

| 1+bd. +—
( + ¢D+kBT¢Dj¢D (S7)

where we have introduced the dendrimer volume fraction, ¢, =v,N/V with v, being the
particle volume, and b(¢,) and e(¢,) are temperature-independent entropic and energetic

terms, respectively. For b(d, ), we use the Carnahan-Starling result.? Specifically, we write:

4-2¢,

b = S8
W)= ) (S8)

Expressions for related functions are reported below:
, db 10-4¢,

b'(¢y) = = " S9
)= g =4, &
" d’b  36-124,

b' () =——= 5 S10
B 1) G109

— " _ 4_3¢D
%%):lb(x)dx—(l_%)z b (S11)

To obtain an expression for e( g, ), the excess internal energy of the system is introduced:



j dr wy, (r) e "0 /BT

Uy, = <wy(r)>=1L

J‘dr o oo (1) kT (S12)

To obtain an expression for U, we apply thermodynamic relations starting from the expression

of I, in Eq. S7 and derive an expression for the Helmoholtz free energy, F, :

(S13)

F,—F’ Tz %
Nk, o

_ _D
kBT
where Z=v, 1, /(¢, k,T) is the compressibility factor, de _[:D e(x)dx, and F, and ¢ are the

standard-state Helmoholtz free energy and dendrimer volume fraction, respectively. The excess

internal energy is then obtained from:

o(F,—F)/T
U,=| =20 =N&
b { o(1/T) LV (S14)

The excess internal energy can be linked to microscopic properties by using?
N> 2
U, =—|@xr)u(r)g(r) dr S15
T j (42’ yu(r) g(r) (S15)

where u(r) is the pairwise particle-particle potential energy, r is the particle-particle distance
and g(r) is the corresponding radial distribution function. If the interaction range is infinitely

short, we can set u(r)=¢v,o(r—o) with r >0, where o is the particle diameter, ¢ is the
energy parameter and O(» —o) is the radial Dirac function with 47[J§0 r’8(r—o) dr=1. For

g(r), we use the Carnahan-Starling contact value, g(o)=(1-¢,/2)/(1-¢, Y =b/4. Thus Eq.

S15 becomes:
UD:N§b¢D (S16)

From Egs. S14,S16, we also derive:



gejfe(x)dx:%gb 4, (S17)

e:%g(lﬁb’%) (S18)
o de 1 o g
¢ =g ACLATS (S19)

To obtain an expression for the second factor in Eq. S3, an expression for wy¢(r) is needed. This

is obtained by assuming a two-domain model.* Each particle is surrounded by a salt-depleted

local domain, v, . When particles are far from each other, the total volume of the local domain
has its maximum value of V| (c0) = Nv, . In general, we have ¥V, (r) < Nv, due to presence of

particle-particle contacts. The remaining space occupied by the system is represented by the bulk

domain with volume: V, =V -V, (r). This second domain is assumed to be a homogeneous

binary salt-water solution with the same internal composition of that of the reservoir. Due to the

presence of the salt component, the change from a generic r to « results in an increase in V; (r)

and corresponding compression of the bulk-domain volume. This decrease in volume is given by

[V, (r)=V,()]. The corresponding positive work performed by the dendrimer particles on the
bulk domain is Il [V, (o) -V, (r)], where Il is the salt osmotic pressure associated with the

bulk domain (and the reservoir). If this is the only mechanism of action of salt, we can write:
Wps(r) ==TII - [Nv, =V (r)] (S20)
We now introduce the ensemble-average local-domain volume:

J' dr VL (r) o Voo (1)/keT

<V, >=1L =(l-a)V (S21)

I dr e v (r)/kgT
V

where « is the corresponding bulk-domain volume fraction. The ensemble-average of wyq(r) is

then given by

<Wps(r) > =—TI - [Nv, —(1-a)V] (S22)



To link Eq. S22 to Eq. S5, we now make the first-order (mean-field) approximation:

In{or o) < - SV @) (523)
B

which is based on the Taylor’s series expansion: In<e ™ >= In<l-x+x"/2+..>=
—<x>+(<x*>—=<x>")/2+... This gives:

I

inferrorer) < I
B

(Nv, —(1-a)V] (S24)

We are now in position to write the following expression for I1 starting from Eq. S6:

_q |-V ST 1| 22
Mm=I1, { = LNHS I, {1 M(%JT%}HS (S25)

For a in Eq. S25, we use the temperature-independent expression obtained from the Mansoori-

Carnahan-Starling-Leland equation of state for a binary hard-sphere mixture:>
a = (1-¢,)exp| —An, — By, —Cry’ + DIn(1+77,) | (S26)

where 7, =, /(1-¢,), A=3q+6q° —q’, B=3q¢"+4q’, C=2q’, D=3¢° —2¢’ and ¢ is the
ratio between the thickness of the local-domain layer surrounding the dendrimer particle and the
particle radius. The expressions of its derivatives, a'(¢,)=da /dé, and a"(¢,)=d’a/dg,’ are

included below:

2_
o = da __«a 1+A+ZB77D+3C77D D/(1+mny) (S27)
dé, 1=, 1-¢,
_da _ «a
d¢D2 (1 - ¢D )2 (828)

{1+2A+2BnD+3Cf7D2—D/(1+77D)+2B+6C77D+D/(“’7D)2}+“—'2
(04

1_¢D (1_¢D)2

The dendrimer chemical potential can be introduced through the Gibbs-Duhem equation at

constant 7" and Ilg:



Oty o
¢D ( a¢D ]T Jg £8¢D jT,HS (529

After inserting Eqs. S7,S25 in Eq. S29, we obtain:

Iy,
1+b + l-a+

o [ & ¢D]¢D (I-a+a ¢D) k T (S30)
v oIl , 2e+ e’¢D " 1_ISVD

- =1+2b+b +—0, — P
kT \ o j T o
vD aII’lD ) — 1 + (2b+ b,¢D) +M — a”% (832)
kT 04y ). &, kyT kT

_ 0

/LID /UD :ln¢D +#q'b¢D n &d‘ e¢D _arHSvD (833)

ke, T ke T kT

where we have used the mathematical relation: J.jD xf'(x)dx=¢, f(¢,)— /2/(’(15D) with

o j:’” f(x)dx. After inserting Egs. S17.S18 in Egs. $30,S33, we finally obtain the two

thermodynamic functions used to construct the boundary of the liquid-liquid phase transition:

ITv, 1 ¢ ITv

=|1+bd, +———(b+Db' l-a+a 5D

T & 2 kBT( ¢D)¢D}¢ —( ) T (S34)

Hy =y —Ing, +Habg +——(2b b ) b — o' Us'n (S35)
. D LI kT p/) b k,T

10



S4. Isothermal Calorimetry Data

In this section, we report our experimental ITC data and the extracted energy parameters.

Table S2. Differential molar heat, ¢, associated with consecutive injections, k, of the titrant
solution containing PAMAM-OH with volume fraction, ¢§, into the titrand solution with

increasing dendrimer volume fraction, ¢,. These heat-of-dilution experiments were performed in

aqueous salt buffer (ACES, pH7.0, 0.10M; sodium sulfate, 0.03 M; ionic strength, 0.14M) and

25.0 °C.

Table S2a. ¢ values at ¢ =0.191.

k &b g® / (kJ mol")
11 0.0195 -2.992
12 0.0212 -2.967
13 0.0228 -2.915
14 0.0244 -2.881
15 0.0260 -2.885
16 0.0276 -2.865
17 0.0292 -2.827
18 0.0307 -2.815
19 0.0323 -2.764

Table S2b. ¢ values at ¢=0.173.

k T g® / (kJ mol")
1 0.0019 -

2 0.0037 -3.159

3 0.0055 -3.201

4 0.0073 -3.142

5 0.0091 -3.098

6 0.0109 -3.100

7 0.0127 -3.035

8 0.0144 -3.067

9 0.0161 -3.001

10 0.0178 -3.017

k &o q® / (kJ mol)
1 0.0017 -

2 0.0034 -2.830

k &b q® / (kJ mol )
11 0.0177 -2.560
12 0.0193 -2.624

11



3 0.0050 -2.817
4 0.0067 -2.774
5 0.0083 -2.740
6 0.0099 -2.710
7 0.0115 -2.692
8 0.0131 -2.670
9 0.0147 -2.613
10 0.0162 -2.575

13 0.0207 -2.576
14 0.0222 -2.507
15 0.0237 -2.438
16 0.0251 -2.402
17 0.0266 -2.433
18 0.0280 -2.421
19 0.0294 -2.259

12



Table S2c. ¢ values at ¢ =0.130.

k &b q® / (k] mol)
11 0.0133 -1.538

12 0.0145 -1.546

13 0.0156 -1.567

14 0.0167 -1.577

15 0.0178 -1.489

16 0.0189 -1.505

17 0.0200 -1.486

18 0.0210 -1.422

19 0.0221 -

Table S2d. ¢ values at ¢;=0.103.

k &b g® / (kJ mol")
1 0.0013 -

2 0.0025 -1.690
3 0.0038 -1.681
4 0.0050 -1.711
5 0.0063 -1.683
6 0.0075 -1.628
7 0.0087 -1.626
8 0.0099 -1.648
9 0.0110 -1.619
10 0.0122 -1.556
k b q® / (kJ mol)
1 0.0010 -

2 0.0020 -1.181
3 0.0030 -1.219
4 0.0040 -1.207
5 0.0050 -1.141
6 0.0059 -1.113
7 0.0069 -1.135
8 0.0078 -1.167
9 0.0087 -1.097

k b q™® / (kJ mol)
11 0.0106 -1.087
12 0.0115 -1.072
13 0.0124 -1.021
14 0.0132 -1.049
15 0.0141 -0.990
16 0.0150 -1.012
17 0.0158 -1.020
18 0.0167 -0.995
19 0.0175 -0.944

13



‘ 10 ‘ 0.0097 ‘ _1.104 ‘ ‘ ‘ ‘

Table S3. Summary of ITC results.

& &/ kJ-mol”! @y / kImol" | ky./kImol!
0.103 18.1 0.127 -33
0.130 18.8 0.227 -5.7
0.173 20.6 0.500 -3.5
0.191 19.8 0.612 -7.9

S5. Salt osmotic coefficient

According to Ref. S6, the salt osmotic coefficient at 25 °C is given by

0.391475 1"

25°C)=1-2
#5(25°C) 111277

+fﬁ[0.01 1976+0.951276 x exp(~21"?) | +
3m°

2
+§(m_gj [0.0024359+ 0.236044 x exp(~2.5 11/2)]
m

C*
where ms = SC and 1=3m—§.
whw m

For other temperatures, we fit the experimental data to the following empirical expression:

2
ou(T) = 0, (25 °C)+1000% 21.377-9.1906 %+0.95293(%) :l[(T/ °C)"2 —(25/°C)"*]

where T is in Celsius. In Fig. S4, the plots of ¢, as a function of C; at 5, 15, 25 and 37 °C show

that ¢, increases with temperature at a given Cj,.

14
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Figure S4. Osmotic coefficient for the Na,SO,4-water system.

S6. Diffusion Coefficient

In this section, we report the measured DLS diffusion coefficients and their theoretical

examination.

Table S4. DLS dendrimer diffusion coefficient, D, ¢, as a function of dendrimer volume

fraction, ¢, at two salt concentrations (C,/mol dm™ =0.044 and 0.949) and two temperatures
(25.0 and 37.0 °C).

Table S4a. Values of D, /10° m?s! at 25.0 and 37.0 °C for C,/mol dm™~ =0.044.

8 25.0°C 37.0°C
0.0067 0.0924 0.1248
0.0100 0.0947 0.1268
0.0149 0.0944 0.1268
0.0183 0.0945 0.1265
0.0205 0.0955 0.1293
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Table S4b. Values of Dy, (/10 m2s! at 25.0 and 37.0 °C for C,/mol dm™ =0.949.

@, 25.0°C 37.0 °C
0.0076 0.0562 0.0774
0.0102 0.0537 0.0733
0.0133 0.0526 0.0715
0.0169 0.0493 0.0671
0.0212 0.0463 0.0622

The DLS diffusion coefficient can be written as’

Dy s = DyH (4, T)S(¢,,T) (S36)

where H(4,,T) and S(¢,,T) are the hydrodynamic and thermodynamic factors, respectively.

Note that S(4,,7) = (v, / kzT)(OI1/ @), . Atlow @,, we can write:

H(¢y,T)=1+k, ¢y +... (S37)
S(dy, T)=1+k §y +... (S38)

where the slopes, k&, and kg, characterize hydrodynamic and thermodynamic interactions,
respectively. The hydrodynamic slope, &, , is expected to be negative, while the thermodynamic
slope, kg, is positive (negative) for repulsive (attractive) particle-particle thermodynamic

interactions. From Eqs. S36-S38, we can write:

Dyys = Dy [1+ (kyy + kg )y +...] (S39)

16



If the observed slope, k, =k, +k;, is positive then particle-particle thermodynamic interactions

are repulsive. The following expression for kg can be extracted from Eq. S31 in the limit of

¢ =0.

2e(0)

k. =2b(0)+
s =200) ks T ks T

a"(O)% - 8+kiT—(12+15q+6q2 +4%) ¢ ps

(S40)

where pg =TI, /k,T . If we set the value of k, at C/mol dm™ =0.044 and 25.0 °C as the

reference k® =

Eqgs. S39,540 yield:

1

kp =ky” +i[%—7j—(l2+15q+6q2 +a)q’ (ps— 1"

kB

R

(S41)

5 =1.8 and assume that k, is independent of salt concentration and temperature,

where p{® is the value of p at Cy/mol dm™ =0.044 and 25.0 °C. In Table S5 (last four

columns), we report the values of k, calculated from Eq. S41 and ¢ =0.30 (kY*”),q=0.33 (
k]()qfso'm ), 0.35 (k]()qfsms)) and 0.40 (k](;ILZOAO)).
Table SS. DLS parameters.

Cy/moldm® | T/oC | &/kyT | ps kp e I e B A A
0.044 25.0 8.0 128 | 18204 | (1.8 (18) (18) (18)
0.949 25.0 8.0 21.95 -11.6+0.4 -1.7 -11.6 -14.2 -23.4
0.044 37.0 7.7 1.28 1.8+0.4 1.5 1.5 1.5 1.5
0.949 37.0 7.7 2243 -12.7+£0.4 -8.2 -12.2 -14.8 -24.3
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