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S1 Composition of ternary dendrimer-salt-water systems

Ternary mixtures were prepared by weight, and the dendrimer and salt weight fractions,  and Dw

, were calculated.  These weight fractions were then converted into dendrimer volume Sw

fraction, , and salt molar concentration, , after estimating the sample density using the D SC

known1 volumetric properties of binary sodium sulfate-water solutions and used the dendrimer 

specific volume specific volume2 of 0.817 g cm-3 assumed to be constant.

Sample density was estimated in the following way. Salt molality, ,
 
was calculated fromSm

S S S S D1000( / ) / (1 )m w M w w  

where . The density  of the corresponding binary salt-water solution was 1
S 142.037g molM  Sd

calculated from the literature expression :1 S S( )d m

3
S

0 0 1.5 0 2 0 2.5
S S S S

/ g cm 0

0.129483 0.0086616 0.0

.997045

( / ) ( / ) ( /061207 0.0007909) ( / )

d
m m m m m m m m

  

   

where . The specific volume, , of the ternary dendrimer-salt-water solution 0 11mol kgm  solnv

was the calculated using the following expression:

soln D D D S S(1 ) / ( )  v w v w d m
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where  is the dendrimer specific volume reported above.2 Dendrimer volume fraction and salt Dv

molar concentrations were then calculated using

D D D soln/  w v v

S S S soln1000( / ) /C w M v

S2. LLPS experimental data 

Tables S1. LLPS temperature (Tph) as a function of salt molar concentration (CS) at several 

dendrimer volume fractions (D) obtained from turbidity experiments.

Table S1a. Tph at D=0.38 Table S1g. Tph at D=0.14

D CS/M Tph/°C
0.384 0.289 4.0
0.383 0.305 13.2
0.384 0.309 16.5
0.384 0.313 19.6
0.383 0.320 24.8
0.383 0.336 34.2

D CS/M Tph/°C
0.140 0.691 36
0.142 0.690 32
0.143 0.690 28

Table S1b. Tph at D=0.29 Table S1h. Tph at D=0.084
D CS/M Tph/°C

0.292 0.372 9.4
0.291 0.374 12.5
0.291 0.377 15.0
0.291 0.378 17.8
0.291 0.380 21.8
0.291 0.385 29.8

D CS/M Tph/°C
0.0834 0.806 33.2
0.0835 0.814 27.6
0.0836 0.822 22.9
0.0835 0.830 17.8
0.0835 0.837 13.8

Table S1c. Tph at D=0.27 Table S1i. Tph at D=0.049
D CS/M Tph/°C

0.265 0.412 4.8
0.266 0.413 10.0
0.266 0.415 21.0
0.267 0.417 42.0

D CS/M Tph/°C
0.0492 0.958 35.4
0.0495 0.964 31.4
0.0492 0.970 28.2
0.0493 0.974 26.6
0.0493 0.978 24.4

Table S1d. Tph at D=0.24 Table S1j. Tph at D=0.00126
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D CS/M Tph/°C
0.237 0.475 0.2
0.235 0.477 3.2
0.235 0.484 12.4
0.234 0.486 12.8

D CS/M Tph/°C
0.0125 0.994 36.8
0.0127 1.002 33.4
0.0125 1.010 30.4
0.0126 1.022 25.3
0.0127 1.026 23.0

Table S1e. Tph at D=0.22 Table S1k. Tph at D=0.0096
D CS/M Tph/°C

0.224 0.500 -4.4
0.224 0.501 -2.0
0.223 0.504 0.8
0.223 0.507 5.0
0.223 0.508 9.2

D CS/M Tph/°C
0.0096 1.267 35.0
0.0096 1.269 34.0
0.0096 1.271 32.0
0.0097 1.271 32.0
0.0096 1.274 30.0

Table S1f. Tph at D=0.21 Table S1l. Tph at D=0.0091
D CS/M Tph/°C

0.208 0.526 -8.0
0.208 0.527 -5.8
0.208 0.529 -2.5
0.208 0.531 -0.4

D CS/M Tph/°C
0.0092 1.384 32.0
0.0091 1.387 27.0
0.0091 1.392 26.0
0.0091 1.396 20.0
0.0091 1.401 19.0

Estimation of dendrimer critical volume fraction from salt-dendrimer partitioning data.
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Figure S1. Plots of  as a function of , where  and  (I) (II)
D D( ) / 2  (II) (I) 1/

D D| |   0.325  0.5 

are the Ising (A) and mean-field (B) exponents, respectively. Linear extrapolation to 

 yield estimates of the critical volume fraction, .(II) (I) 1/
D D| | 0   (c)
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Estimation of the partitioning coefficient, , from salt-dendrimer partitioning data.S D( / )  TC
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the Ising (A) and mean-field (B) exponents, respectively. Linear extrapolation to 
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Estimation of the partitioning coefficient, , from the experimental binodal curve.S D( / )  TC
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S3. Thermodynamic model

We consider a ternary dendrimer-salt-water system of volume, ,  in equilibrium with an V
infinitely large reservoir consisting of a binary salt-water system through a membrane not 

permeable to dendrimer particles. The thermodynamic properties of the reservoir are fixed at 

constant temperature. We denote as  the pressure difference between the two compartments. 

This is the osmotic-pressure contributions due to the dendrimer particles. To determine , we 

treat the dendrimer solution as a suspension of dendrimer gas particles. The corresponding N

canonical partition function, , is given by3 Q

(S1)B( ) /int
3

1
!

     
N

w k T

V

qQ d e
N

rr

where  is the Boltzmann constant,  is the volume of the system,  is the particle thermal Bk V 

wavelength,  it the particle internal partition function,  collectively represents the  intq r 3N

spatial coordinates of the  particles and  is the potential of mean force, which is given by:N ( )w r

(S2)DD DS( ) ( ) ( ) w w wr r r

where  is the potential contribution associated with dendrimer-dendrimer interaction in DD ( )w r

the absence of bulk domain, with , where “ ’ denotes that all particle-particle DD ( ) 0 w 

distances are infinitely large. The remaining contribution in Eq. S2, , describes the effect DS( )w r

of salt on dendrimer-dendrimer interactions. Using Eq. S2, Eq. S1 can be rewritten in the 

following way:

(S3)DS B( ) /
D

 w k TQ Q e r

with

(S4)DD B( ) /int
D 3

1
!

     
N

w k T

V

qQ d e
N

rr
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The osmotic pressure of the dendrimer particles is given by

(S6)
DS B( ) /

B D B
,

,

lnln
               

w k T

T N
T N

eQk T k T
V V

r

where . We start by considering the osmotic pressure of the dendrimer D B D ,( ln / )    T Nk T Q V

particles in the absence bulk domain ( ). Here, we propose the following type of equation DS 0w

of state:

(S7)D D
D D D

B B

1   
 

   
 

v eb
k T k T

where we have introduced the dendrimer volume fraction,  with  being the D D /  v N V Dv

particle volume, and  and  are temperature-independent entropic and energetic D( )b D( )e

terms, respectively. For , we use the Carnahan-Starling result.3 Specifically, we write:D( )b

(S8)D
D 3

D

4 2( )
(1 )








b

Expressions for related functions are reported below:

(S9)D
D 4

D D

10 4( )
(1 )


 

  


dbb
d

(S10)
2

D
D 2 5

D D

36 12( )
(1 )


 

  


d bb
d

(S11)
D

D
D D2

D0

4 3( ) ( )
(1 )

  



 

%b b x dx

To obtain an expression for , the excess internal energy of the system is introduced:D( )e



7

(S12)
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To obtain an expression for , we apply thermodynamic relations starting from the expression DU

of  in Eq. S7 and derive an expression for the Helmoholtz free energy, :D DF

(S13)
D0

D D D
D0

B D D B0

1ln
 

 
 

   
%%F F Z ed b

N k T k T

where  is the compressibility factor, , and  and  are the D D D B/ ( ) Z v k T
D

0
( )


 %e e x dx 0

DF 0
D

standard-state Helmoholtz free energy and dendrimer volume fraction, respectively. The excess 

internal energy is then obtained from:

(S14)
0

D D
D

,

( ) /
(1/ )

  
   

%
N V

F F TU N e
T

The excess internal energy can be linked to microscopic properties by using3

(S15)
2

2
D

0

(4 ) ( ) ( )
2




 
NU r u r g r dr
V

where  is the pairwise particle-particle potential energy,  is the particle-particle distance ( )u r r

and  is the corresponding radial distribution function. If the interaction range is infinitely ( )g r

short, we can set  with , where  is the particle diameter,  is the D( ) ( )   u r v r r   

energy parameter and  is the radial Dirac function with . For ( )r  2

0
4 ( ) 1r r dr  


 

, we use the Carnahan-Starling contact value, . Thus Eq. ( )g r 3
D D( ) (1 / 2) / (1 ) / 4     g b

S15 becomes:

(S16)D D8
 U N b

From Eqs. S14,S16, we also derive:
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(S17)D

D0

1( )
8


  %e e x dx b

(S18)D
1 ( )
8
  e b b

(S19)D
D

1 (2 )
8
 


    

dee b b
d

To obtain an expression for the second factor in Eq. S3, an expression for  is needed. This DS( )w r

is obtained by assuming a two-domain model.4 Each particle is surrounded by a salt-depleted 

local domain, . When particles are far from each other, the total volume of the local domain Lv

has its maximum value of . In general, we have  due to presence of L L( ) V N v L L( ) V N vr

particle-particle contacts. The remaining space occupied by the system is represented by the bulk 

domain with volume: . This second domain is assumed to be a homogeneous B L ( ) V V V r

binary salt-water solution with the same internal composition of that of the reservoir. Due to the 

presence of the salt component, the change from a generic  to  results in an increase in  r  L ( )V r

and corresponding compression of the bulk-domain volume. This decrease in volume is given by 

. The corresponding positive work performed by the dendrimer particles on the L L[ ( ) ( )] V Vr

bulk domain is , where  is the salt osmotic pressure associated with the S L L[ ( ) ( )]   V V r S

bulk domain (and the reservoir). If this is the only mechanism of action of salt, we can write:

(S20)DS S L L( ) [ ( )]   w N v Vr r

We now introduce the ensemble-average local-domain volume:

(S21)

DD B

DD B

( ) /
L

L ( ) /

( )
(1 )




   





w k T

V
w k T

V

d V e
V V

d e

r

r

r r

r

where  is the corresponding bulk-domain volume fraction. The ensemble-average of  is  DS( )w r

then given by

(S22)DS S L( ) [ (1 ) ]      w N v Vr
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To link Eq. S22 to Eq. S5, we now make the first-order (mean-field) approximation:

(S23)DS B( ) / DS

B

( )ln   
 w k T we

k T
r r

which is based on the Taylor’s series expansion: ln   xe 2ln 1 / 2 ...     x x

 This gives:2 2( ) / 2 ...         x x x

(S24)DS B( ) / S
L

B

ln [ (1 ) ] 
   w k Te N v V

k T
r

We are now in position to write the following expression for  starting from Eq. S6:

(S25)D S D D S
, D

(1 ) 1  


                        T N T

V
V

For  in Eq. S25, we use the temperature-independent expression obtained from the Mansoori-

Carnahan-Starling-Leland equation of state for a binary hard-sphere mixture:5

(S26)2 3
D D D D D(1 )exp ln(1 )A B C D             

where , , , ,  and  is the D D D/ (1 )    2 33 6A q q q   2 33 4B q q  32C q 2 33 2D q q  q

ratio between the thickness of the local-domain layer surrounding the dendrimer particle and the 

particle radius. The expressions of its derivatives,  and  are D D( ) /     d d 2 2
D D( ) /     d d

included below:

(S27)
2

D D D

D D D

2 3 / (1 )1
1 1

A B C Dd
d

   
  

           

(S28)

2

2 2
D D

2 2 2
D D D D D

2
D D

(1 )

2 3 / (1 ) 2 6 / (1 )1 2
1 (1 )

d
d

A B C D B C D

 
 

     
  

   


        
     

The dendrimer chemical potential can be introduced through the Gibbs-Duhem equation at 

constant  and :T S
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(S29)
S S

D
D

D D, ,


 

 

    
       T T

After inserting Eqs. S7,S25 in Eq. S29, we obtain:

(S30)S DD
D D D D

B B B

1 (1 )     
         
 

vv eb
k T k T k T

(S31)
S

S DD D
D D D D

B D B B,

21 (2 )     




           T

vv e eb b
k T k T k T

(S32)
S

S DD D D
D

B D D B B,

21 (2 )  
 



           T

vv e eb b
k T k T k T

(S33)
0

S DD D D
D D

B B B

ln           
%% ve eb b

k T k T k T

where we have used the mathematical relation:  with D

D D D0
( ) ( ) ( )


     %x f x dx f f

. After inserting Eqs. S17,S18 in Eqs. S30,S33, we finally obtain the two D

0
( )


 %f f x dx

thermodynamic functions used to construct the boundary of the liquid-liquid phase transition:

(S34)S DD
D D D D D

B B B

11 ( ) (1 )
8

      
           
 

vv b b b
k T k T k T

(S35)
0

S DD D
D D D D

B B B

1ln (2 )
8

              % vb b b b
k T k T k T
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S4. Isothermal Calorimetry Data

In this section, we report our experimental ITC data and the extracted energy parameters.

Table S2. Differential molar heat, q(k), associated with consecutive injections, k, of the titrant 
solution containing  PAMAM-OH with volume fraction, , into the titrand solution with 0

D
increasing dendrimer volume fraction, . These heat-of-dilution experiments were performed in D
aqueous salt buffer (ACES, pH7.0, 0.10M; sodium sulfate, 0.03 M; ionic strength, 0.14M) and 
25.0 °C.

Table S2a. q(k) values at =0.191.0
D

k D q(k) / (kJ mol-1) k D q(k) / (kJ mol-1)

1 0.0019  11 0.0195 -2.992

2 0.0037 -3.159 12 0.0212 -2.967

3 0.0055 -3.201 13 0.0228 -2.915

4 0.0073 -3.142 14 0.0244 -2.881

5 0.0091 -3.098 15 0.0260 -2.885

6 0.0109 -3.100 16 0.0276 -2.865

7 0.0127 -3.035 17 0.0292 -2.827

8 0.0144 -3.067 18 0.0307 -2.815

9 0.0161 -3.001 19 0.0323 -2.764

10 0.0178 -3.017

Table S2b. q(k) values at =0.173.0
D

k D q(k) / (kJ mol-1) k D q(k) / (kJ mol-1)

1 0.0017  11 0.0177 -2.560

2 0.0034 -2.830 12 0.0193 -2.624
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3 0.0050 -2.817 13 0.0207 -2.576

4 0.0067 -2.774 14 0.0222 -2.507

5 0.0083 -2.740 15 0.0237 -2.438

6 0.0099 -2.710 16 0.0251 -2.402

7 0.0115 -2.692 17 0.0266 -2.433

8 0.0131 -2.670 18 0.0280 -2.421

9 0.0147 -2.613 19 0.0294 -2.259

10 0.0162 -2.575
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Table S2c. q(k) values at =0.130.0
D

k D q(k) / (kJ mol-1) k D q(k) / (kJ mol-1)

1 0.0013  11 0.0133 -1.538

2 0.0025 -1.690 12 0.0145 -1.546

3 0.0038 -1.681 13 0.0156 -1.567

4 0.0050 -1.711 14 0.0167 -1.577

5 0.0063 -1.683 15 0.0178 -1.489

6 0.0075 -1.628 16 0.0189 -1.505

7 0.0087 -1.626 17 0.0200 -1.486

8 0.0099 -1.648 18 0.0210 -1.422

9 0.0110 -1.619 19 0.0221 

10 0.0122 -1.556

Table S2d. q(k) values at =0.103.0
D

k D q(k) / (kJ mol-1) k D q(k) / (kJ mol-1)

1 0.0010  11 0.0106 -1.087

2 0.0020 -1.181 12 0.0115 -1.072

3 0.0030 -1.219 13 0.0124 -1.021

4 0.0040 -1.207 14 0.0132 -1.049

5 0.0050 -1.141 15 0.0141 -0.990

6 0.0059 -1.113 16 0.0150 -1.012

7 0.0069 -1.135 17 0.0158 -1.020

8 0.0078 -1.167 18 0.0167 -0.995

9 0.0087 -1.097 19 0.0175 -0.944
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10 0.0097 -1.104

Table S3. Summary of ITC results.

D / kJ∙mol-1 / kJ∙mol-1
D / kJ∙mol-1

ITCk

0.103 18.1 0.127 -3.3

0.130 18.8 0.227 -5.7

0.173 20.6 0.500 -3.5

0.191 19.8 0.612 -7.9

S5. Salt osmotic coefficient

According to Ref. S6, the salt osmotic coefficient at 25 °C is given by

1/2
o 1/2S

S 1/2 0

2
1/2S

0

0.391475 4(25 C) 1 2 0.011976 0.951276 exp( 2 )
1 1.2 3

16 0.0024359 0.236044 exp( 2.5 )
3

         

          

mI I
I m

m I
m

where  and .
*
S

S *
W W


Cm

M C
S
03

mI
m

For other temperatures, we fit the experimental data to the following empirical expression:

2
o o 1/2 o 1/2S S S

S S 0 0 0( ) (25 C) 1000 21.377 9.1906 0.95293 [( / C) (25 / C) ] 
        

   

m m mT T
m m m

where  is in Celsius. In Fig. S4, the plots of  as a function of  at 5, 15, 25 and 37 °C show T S
*
SC

that  increases with temperature at a given .S
*
SC
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Figure S4. Osmotic coefficient for the Na2SO4-water system.

S6. Diffusion Coefficient

In this section, we report the measured DLS diffusion coefficients and their theoretical 

examination.

Table S4. DLS dendrimer diffusion coefficient, , as a function of dendrimer volume DLSD
fraction, , at two salt concentrations ( 0.044 and 0.949) and two temperatures D

3
S mol/ dm C

(25.0 and 37.0 °C).

Table S4a. Values of /10-9 m2s-1 at 25.0 and 37.0 °C for 0.044.DLSD 3
S mol/ dm C

D 25.0 °C 37.0 °C

0.0067 0.0924 0.1248

0.0100 0.0947 0.1268

0.0149 0.0944 0.1268

0.0183 0.0945 0.1265

0.0205 0.0955 0.1293
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Table S4b. Values of /10-9 m2s-1 at 25.0 and 37.0 °C for 0.949.DLSD 3
S mol/ dm C

D 25.0 °C 37.0 °C

0.0076 0.0562 0.0774

0.0102 0.0537 0.0733

0.0133 0.0526 0.0715

0.0169 0.0493 0.0671

0.0212 0.0463 0.0622

The DLS diffusion coefficient can be written as7

(S36)DLS 0 D D( , ) ( , ) D D H T S T

where  and  are the hydrodynamic and thermodynamic factors, respectively. D( , )H T D( , )S T

Note that . At low , we can write:D D B D( , ) ( / )( / )   TS T v k T D

(S37)D D( , ) 1 ...   HH T k

(S38)D D( , ) 1 ...   SS T k

where the slopes,  and , characterize hydrodynamic and thermodynamic interactions, Hk Sk

respectively. The hydrodynamic slope, , is expected to be negative, while the thermodynamic Hk

slope, , is positive (negative) for repulsive (attractive) particle-particle thermodynamic Sk

interactions. From Eqs. S36-S38, we can write: 

(S39) DLS 0 D1 ( ) ...   H SD D k k
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If the observed slope, , is positive then particle-particle thermodynamic interactions  D H Sk k k

are repulsive. The following expression for  can be extracted from Eq. S31 in the limit of Sk

. D 0 

(S40)2 3 3S D
S

B B B

2 (0)2 (0) (0) 8 (12 15 6 )         S
vek b q q q q p

k T k T k T

where . If we set the value of  at 0.044 and 25.0 °C as the S S D B/ p v k T Dk 3
S mol/ dm C

reference  and assume that  is independent of salt concentration and temperature, ( ) 1.8R
Dk Hk

Eqs. S39,S40 yield:

(S41) ( ) 2 3 3 ( )
S S

B

1 1 (12 15 6 )  
        

 
R R

D D
R

k k q q q q p p
k T T

where  is the value of  at 0.044 and 25.0 °C. In Table S5 (last four ( )
S

Rp Sp 3
S mol/ dm C

columns), we report the values of  calculated from Eq. S41 and  ( ),  (Dk 0.30q ( 0.30)
DLS

qk 0.33q

), 0.35 ( ) and 0.40 ( ). ( 0.33)
DLS

qk ( 0.35)
DLS

qk ( 0.40)
DLS

qk

Table S5. DLS parameters.

/ mol dm-3
SC / °CT B/ k T Sp Dk ( 0.30)q

Dk ( 0.33)q
Dk ( 0.35)q

Dk ( 0.40)q
Dk

0.044 25.0 8.0 1.28 1.8±0.4 (1.8) (1.8) (1.8) (1.8)

0.949 25.0 8.0 21.95 -11.6±0.4 -7.7 -11.6 -14.2 -23.4

0.044 37.0 7.7 1.28 1.8±0.4 1.5 1.5 1.5 1.5

0.949 37.0 7.7 22.43 -12.7±0.4 -8.2 -12.2 -14.8 -24.3
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