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For all digital simulations ks,h = heterogeneous rate constant and α =  transfer coefficient, Kchem = 

rate of forward chemical step. 

 

 

 

Figure S1: CV of 30 mM pyridine at pH 5.6 in 0.5 M KCl degassed in N2 on Pt electrode at 5 (A), 100 (B), and 200 

(C) mV/s (black), digital simulation (circles).  A reversible electron transfer step followed by an irreversible 

chemical step was employed for simulations, Diffusion coefficient = 1.77 x 10-5 cm2 s-1, ks,h = 0.0083 cm s-1, α = 

0.59, Kchem = 0.11 s-1.  At faster scan rates the anodic wave increases relative to the cathodic wave. 



 

Figure S2: CV of 30 mM pyridine at pH 5.6 in 0.5 M KCl degassed in N2 on Ag electrode at 100 mV/s (green), 

digital simulation (circles). A reversible electron transfer step followed by an irreversible chemical step was 

employed for simulations, Diffusion coefficient = 2.24 x 10-5 cm2 s-1, ks,h = 0.0091 cm s-1, α = 0.57, Kchem > 10 s-1.   

 

 

 

Figure S3: CV of 30 mM pyridine at pH 5.6 in 0.5 M KCl degassed in N2 on Cu electrode at 100 mV/s (blue), digital 

simulation (circles).  A reversible electron transfer step followed by an irreversible chemical step was employed 

for simulations, Diffusion coefficient = 8.89 x 10-6 cm2 s-1, ks,h = 0.006 cm s-1, α = 0.49, Kchem > 10 s-1.   



 

Figure S4: CV of 30 mM pyridine at pH 5.6 in 0.5 M KCl degassed in N2 on Au electrode at 100 mV/s (red), digital 
simulation (circles).  A reversible electron transfer step followed by an irreversible chemical step was employed 
for simulations, Diffusion coefficient = 1.71 x 10-5 cm2 s-1, ks,h = 0.002 cm s-1, α = 0.49, Kchem > 10 s-1. 

 

 

Figure S5: Cyclic voltammetry of 5 mM ruthenium hexamine on a Ag electrode 100 mV/s, 0.5 M KCl degassed in 

N2  (green), digital simulation (circles) for an E mechanism with reversible 1e transfer, Diffusion coefficient = 8.94 

x 10-6 cm2 s-1, ks,h = 0.39 cm s-1 , α = 0.5. 



 

Figure S6: Cyclic voltammetry of 5 mM ruthenium hexamine on a Pt electrode 100 mV/s, 0.5 M KCl degassed in 

N2 (black), digital simulation (circles) for an  E mechanism with reversible 1e transfer, Diffusion coefficient = 8.67 

x 10-6 cm2 s-1, ks,h = 0.35 cm s-1 , α = 0.49. 

 

Figure S7: Cyclic voltammetry of 5 mM ruthenium hexamine on a Au electrode 100 mV/s, 0.5 M KCl degassed in 

N2 (red), digital simulation (circles) for an E mechanism with reversible 1e transfer, Diffusion coefficient = 8.48 x 

10-6 cm2 s-1, ks,h = 0.33 cm s-1 , α = 0.50. 

Cyclic voltammetry of ruthenium hexamine could not be detected on copper electrodes because 

copper oxidizes near the reduction potential of ruthenium hexamine. 



  

Figure S8: Peak cathodic current vs the square root of the scan rate for pyridinium in the absence of CO2 on Ag 

electrodes.   Experimentally determined diffusion coefficient = 2.24 x 10-5 cm2 s-1 

 

 

Figure S9 : Peak cathodic current vs the square root of the scan rate for pyridinium in the absence of CO2 on Pt 

electrodes.  Experimentally determined diffusion coefficient = 1.77 x 10-5 cm2 s-1 



 

Figure S10: Peak cathodic current vs the square root of the scan rate for pyridinium in the absence of CO2 on Au 

electrodes.  Experimentally determined diffusion coefficient = 1.71 x 10-5 cm2 s-1 

 

Figure S11: Peak cathodic current vs the square root of the scan rate for pyridinium in the absence of CO2 on Cu 

electrodes.  Experimentally determined diffusion coefficient = 8.89 x 10-6 cm2 s-1 

   



 

Figure S1: CV of Pt in acetonitrile with 30 mM pyridine, 30 mM perchloric acid, in 0.5 M NaClO4 at 100 mV/s, 

degassed in N2 (black), digital simulation (circles).  A reversible electron transfer step followed by an irreversible 

chemical step was employed for simulations, Diffusion coefficient = 1.38 x 10-5 cm2 s-1, ks,h = 0.0077 cm s-1, α = 

0.50, Kchem = 0.3 s-1.   

 

Figure S13: CV of Ag in acetonitrile with 30 mM pyridine, 30 mM perchloric acid, in 0.5 M NaClO4 at 100 mV/s, 

degassed in N2 (green), digital simulation (circles).  A reversible electron transfer step followed by an irreversible 

chemical step was employed for simulations, Diffusion coefficient = 1.12 x 10-5 cm2 s-1, ks,h = 0.0073 cm s-1, α = 

0.47, Kchem >  10 s-1.   



 

 

 

Figure S14: CV of Au in acetonitrile with 30 mM pyridine, 30 mM perchloric acid, in 0.5 M NaClO4 at 100 mV/s, 

degassed in N2 (red), digital simulation (circles).  A reversible electron transfer step followed by an irreversible 

chemical step was employed for simulations, Diffusion coefficient = 1.11 x 10-5 cm2 s-1, ks,h = 0.0082 cm s-1, α = 

0.48, Kchem >  10 s-1. 

 

 

Figure S15: CV of Cu in acetonitrile with 30 mM pyridine, 30 mM perchloric acid, in 0.5 M NaClO4 at 100 mV/s, 

degassed in N2 (blue), digital simulation (circles).  A reversible electron transfer step followed by an irreversible 



chemical step was employed for simulations, Diffusion coefficient = 1.55 x 10-5 cm2 s-1, ks,h = 0.0071 cm s-1, α = 

0.48, Kchem >  10 s-1. 

 

 

Figure S16 : CV's without pyridine, but with CO2 buffered in K2CO3 to pH 5.6 at 5 mV/s.  Electrodes are color 

coded Pt (black), Ag (green), Au (red), and Cu (blue). 

 

S17 - SPECTROELECTROCHEMISTRY OF PYRIDINIUM ON COPPER 

The method of preparation of film over nanosphere (FON) SERS active electrodes was adapted 

from previous literature procedures.2,3  540nm nm polystyrene spheres (Invitrogen) were diluted 

by a factor of 2 in milliQ water. The spheres were sonicated for ~ 15 minutes and vortexed for 1 

minute. The spheres were then centrifuged at 10,000 rpm for 2.5 minutes. The supernatant was 

removed and fresh milliQ was added until the identical volume was achieved. This process was 

repeated 2 times to clean the sphere solution. A Kel-F plug with a copper lead was polished 



using a 1 μm alumina polish and sonicated in milliQ water for 1 minute. Kapton tape was used to 

mask off the sides of the electrode where metal contact was not desired. 400 nm of Cu was 

deposited on the plug using electron beam deposition at ~ 10-7 Torr. 10 μL of 400:1 

methanol:tritonix solution was added on the 400 nm Cu electrode to wet the surface. 5 μL of the 

sphere solution was drop cast on top of the electrode; additional milliQ water was added to 

ensure that the solution covered the entire electrode surface. The electrode was rotated until the 

solution uniformly coated the electrode surface, and the solution was allowed to dry, leaving a 

hexagonally closed pack array of nanospheres on the surface. 200 nm Cu was deposited on the 

electrode using electron beam deposition at ~ 10-7 Torr.  

 

The spectroelectrochemical cell consisted of flow cell made of Kel-F with a back side for 

the working electrode, and front side for a 18 mm glass cover slip. The cell has several side ports 

for the reference electrode, counter electrode, a mounting port, and several ports for injection of 

liquids and/or gases. The front of the cell consists of an 18 mm glass cover slip in between two 

rubber gaskets and screwed into the cell body with a metal front plate. The electrode is placed in-

between two rubber gaskets and screwed into the cell body with a metal back plate. The counter 

electrode was coiled around the working electrode in order to maximize surface area in the cell 

without shorting the working electrode.  A more thorough description of the cell is provided 

elsewhere.4 The entire cell assembly is mounted to an optical post where laser light was focused 

onto the electrode surface, and back scattered Raman light was collected. The Raman scattered 

light was collected through a series of optical elements and focused into a 2500i Acton triple 

grating spectrometer (Princeton Instruments) and detected using a PIXIS CCD detector 

(Princeton Instruments). A 633 nm continuous wave HeNe (Voltex inc) laser at 7 mW power 

was used for all spectroelectrochemistry experiments. The spectrometer was calibrated using a 



cyclohexane spectrum.  A CH instruments potentiostat was used to control the electrode potential 

during the SERS experiments. 
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