How the Spontaneous Insertion of Amphiphilic Imidazolium-Based Cations Change Biological Membranes: A Molecular Simulation Study

Geraldine S. Lim^a, Stephan Jaenicke^b and Marco Klähn^c*

^a Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16, Connexis, Singapore 138632, Rep. of Singapore

^b National University of Singapore, Department of Chemistry, 3 Science Drive 3, Singapore 117543, Rep. of Singapore

^c Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore 627833, Rep. of Singapore

E-mail: klahnm@ices.a-star.edu.sg

Figure S1: Total energy (a) and volume (b) of solvated membrane system over the last 20 ns of equilibration simulation. Results were subsequently used to initiate free energy calculations.

Figure S2: A representative plot of the total energy (a) and volume (b) as a function of simulation time. This was recorded during an MD run, which was used to derive free energy changes that were induced by pulling OMIM⁺ from water into the membrane.

Figure S3: A representative plot of the total energy (a) and volume (b) as a function of simulation time. This was recorded during an MD run, which was used to derive free energy changes that were induced by pulling OMIM⁺ from the membrane into water, while a second cation remained inside the membrane. At the start of these simulations, the two cations were placed inside the membrane *closer* than their energetically optimum distance.

Figure S4: A representative plot of the total energy (a) and volume (b) as a function of simulation time. This was recorded during an MD run, which was used to derive free energy changes that were induced by pulling OMIM⁺ from the membrane into water, while a second cation remained inside the membrane. At the start of these simulations, the two cations were placed inside the membrane *at* their energetically optimum distance.

Figure S5: A representative plot of the total energy (a) and volume (b) as a function of simulation time. This was recorded during an MD run, which was used to derive free energy changes that were induced by pulling OMIM⁺ from the membrane into water, while a second cation remained inside the membrane. At the start of these simulations, the two cations were placed inside the membrane *farther* than their energetically optimum distance.

Figure S6: A representative plot of the total energy (a) and volume (b) as a function of simulation time. This was recorded during an MD run, which was used to derive free energy changes that were induced by pulling OMIM⁺ across the membrane relative to a second cation, while both cations remained inside the membrane.

Figure S7: A representative plot of the total energy (a) and volume (b) as a function of simulation time. This was recorded during an MD run, which was used to derive free energy changes that were induced by pulling ammonia through the membrane.