The transition metal surface passivated edges of hexagonal boron nitride (h-BN) and the mechanism of h-BN's chemical vapor deposition (CVD) growth

Ruiqi Zhao^{1,2,3}, Feifei Li², Zhirong Liu³, Zhongfan Liu³ and Feng Ding^{1,4*}

¹Beijing Computational Science Research Center, Beijing 100084, China

²School of Physics and Chemistry, Henan Polytechnic University, Henan 454003,

China

³State Key Laboratory for Structural Chemistry of Unstable and Stable Species,

Beijing National Laboratory for Molecular Sciences (BNLMS), and Center for

Nanochemistry, College of Chemistry and Molecular Engineering, Peking University,

Beijing 100871, China

⁴Institute of Textiles and Clothing, Hong Kong Polytechnic University, Kowloon,

Hong Kong, China

*Author to whom correspondence should be addressed. feng.ding@polyu.edu.hk.

Contents:

1. Tests of stable configurations.

- 2. Edge energies of freestanding h-BN and h-BN on different metals.
- 3. Magnetism in some typical models.
- 4. Formation energies vs. orientations, Wulff shapes of h-BN on Cu(111), Ni(111) and Rh(111).

1. Tests of stable configurations.

Tests of stable configurations are performed carefully with 9-ZZ BNNRs (containing 9 zigzag BN chains) on Cu(111) and Ni(111). Six high symmetric configurations, B_hN_t , B_fN_t , B_hN_f , B_fN_h , B_tN_f , and B_tN_h , which are identified by the positions occupied by B and N atoms, are considered. Figure S1 shows the relative energies of different configurations with respect to that of B_hN_t . From Fig. S1, we can see that for BNNR B_hN_t is the most stable one on Cu(111) while is a little less unstable than B_fN_h . Therefore, the configuration B_hN_t is used to study the edge stabilities of h-BN on metals in our simulations.

Fig. S1 Relative energies (ΔE) of different configurations of 9-ZZ BNNR with respect to that of B_hN_t on the (111) facets of Cu(\blacktriangle) and Ni(\bullet).

Edge types Edge energies (eV/nm) $\gamma^0 (\Delta \mu = 0)$ $\gamma^0 (\Delta \mu \neq 0)$ Rh(111) Bare H-terminated Cu(111) Ni(111) $\gamma^0 + \Delta \mu/3$ ZZN 10.87 5.95 5.5 4.47 3.26 $\gamma^0 + \Delta \mu/3$ ZZN57 10.29 9.95 8.96 6.28 5.42 $\gamma^0 - 2\Delta\mu/3$ ZZN+B 19.30 14.53 9.13 5.44 3.30 $\gamma^0-\Delta\mu/3$ ZZB 12.96 9.55 7.91 5.7 4.56 $\gamma^0 - \Delta \mu/3$ ZZB57 11.85 11.25 9.43 5.93 6.19 $\gamma^0 + 2\Delta\mu/3$ ZZB+N 9.87 7.27 4.73 3.29 2.31 γ^0 AC 7.57 7.44 6.84 4.49 3.09 γ^0 AC677 11.91 14.09 11.51 9.02 Unstable $\gamma^0 + \Delta \mu$ AC+N 13.14 11.21 7.33 7.17 5.47 $\gamma^0 - \Delta \mu$ AC+B 15.20 17.85 10.75 6.77 4.61 $\gamma^0 + 2\Delta\mu$ AC-Ns 9.18 14.43 9.57 7.25 5.91 $\gamma^0 - 2\Delta\mu$ AC-Bs 22.58 24.68 16.29 12.08 10.80

2. Edge energies of free standing h-BN and h-BN on different metals.

Table S1 Edge energies of free standing h-BN and h-BN on Cu(111), Ni(111), and Rh(111) at different chemical potential differences ($\Delta\mu$).

Notes: The energies of H-terminated edges were calculated with $\mu_H = -4.74$ eV, which is calculated with pressure and temperature of 10⁻⁴ mbar and 10³ K.¹

3. Magnetism in some typical models.

Table S2 Magnetism (μ B) summary of BN flakes/BNNRs with bare, H-terminated, and Cu(111)-, Ni(111)-, Rh(111)- passivated edges. The data in parentheses are those of corresponding Ni substrates. The magnetism of Cu(111) and Rh(111) without BN is zero.

Magnetism	Bare edges	H-	On Cu(111)	On Ni(111)	On Rh(111)
Edge types		terminated			
ZZN	6.00	0.00	0.00	177.70	0.61
				(188.41)	
ZZN+B	2.00	0.00	0.00	64.00	0.00
				(67.61)	
ZZB	12.00	0.00	0.00	170.83	0.51
				(188.41)	
ZZB+N	4.53	0.00	0.00	66.46	0.00
				(67.61)	
AC-Ns	0.00	0.00	0.00	79.87	0.00
				(82.19)	
AC	0.00	0.00	0.00	79.81	0.00
				(82.19)	
AC+B	2.00	2.00	0.00	77.66	0.00
				(82.19)	
AC-Bs	4.00	0.00	0.00	76.38	0.00
				(82.19)	

4. Formation energies vs. orientations, Wulff shapes of h-BN on Cu(111), Ni(111) and Rh(111) at different chemical potential difference.

Fig. S2 Formation energies *vs.* orientations of h-BN on Cu(111) (a-d), Ni(111) (e-h) and Rh(111) (i-l) at different chemical potential differences, $\Delta\mu$. Red and blue solid lines represent the B– and N–rich directions, respectively. The Wulff shapes of h-BN domains are also shown with dashed lines. Red, blue and purple dashed lines represent the shapes constructed with edges along ZZB, ZZN and AC directions, respectively.

(1) Zhao, R.; Gao, J.; Liu, Z.; Ding, F. Nanoscale 2015, 7, 9723.