Electronic Supplementary Information (ESI) for

Transition Metal Selenides as Efficient Counter Electrode Materials for Dye-sensitized Solar Cells

Jiahao Guo,[‡]*a,b* Suxia Liang,[‡]*a* Yantao Shi, *a*,* Ce Hao,*a* Xuchun Wang,*b* and Tingli Ma *c,d*,*

^a State Key laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China. E-mail: tinglima@dlut.edu.cn; shiyantao@dlut.edu.cn

^bCollege of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui, 233100, P. R. China.

^cSchool Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin 124221, P. R. China ^dGraduate School of Life Science and Systems Engineering Kyushu Institute of Technology, Kitakyushu, Fukuoka, 808-0196, Japan

‡ Jiahao Guo and Suxia Liang contributed equally to this work.



Figure S1 XRD patterns of the synthesized three selenides. (a) MoSe₂, (b) WSe₂, and (c) TaSe₂.

X-ray diffractograms peak assignments of the synthesized five selenides

In Figure *S*1, for curve a, the diffraction peaks at 13.74° , 27.44° , 31.38° , 34.20° , 37.98° , 42.00° , 47.22° , 53.45° , 55.56° , 56.76° , and 65.30° are assigned to the crystal planes (002), (004), (100), (102), (103), (006), (105), (106), (110), (008), and (200), respectively (29-0914, PDF 2 database) and indicate that the hexagonal MoSe₂ was successfully synthesized. For WSe₂, the diffraction peaks at 13.54° , 27.54° , 31.20° , 34.40° , 37.96° , 41.40° , 47.18° , 55.68° , 56.42° , 57.82° , and 65.58° are assigned to the crystal planes (002), (004), (100), (102), (103), (006), (105), (110), (008), (112) and (200), respectively (38-1388, PDF 2 database). For TaSe₂, the diffraction peaks at 13.95° , 30.21° , 32.93° , 41.82° , 43.15° , 52.42° , and 62.77° are assigned to the crystal planes (002), (101), (102), (104), (006), (110), and (201), respectively (19-1303, PDF 2 database).

Crystal structures	Space groups	Lattice parameters			Morphology
		a(Å)	b(Å)	c(Å)	worphology
MoSe ₂	P63/mmc(194)	3.287	3.287	12.925	interlaced nanosheets
WSe ₂	P63/mmc(194)	3.286	3.286	12.983	nanoplates
TaSe ₂	P63/mmc(194)	3.436	3.436	12.696	fluffy nanoparticle

Table S1 Crystal structures, space groups, lattice parameters, and morphologies of the three TMSs.

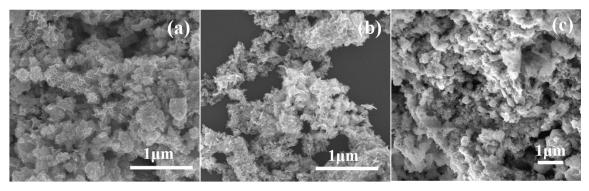
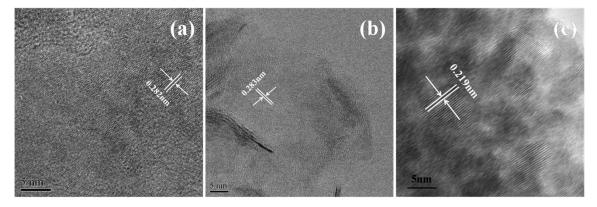
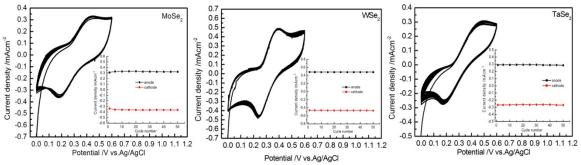




Figure S2 Low-magnification SEM images of the three TMSs: (a) MoSe₂, (b) WSe₂, and (c) TaSe₂.

Figure S3 High resolution TEM images of (a) MoSe₂, (b) WSe₂, and (c) TaSe₂. The high resolution TEM image of MoSe₂, WSe₂, and TaSe₂ (Figure S3b, c, and d) shows lattice fringes with spacing of 0.282 nm, 0.283nm, and 0.291nm, corresponding to the (100), (100), and (101) planes of hexagonal MoSe₂, WSe₂, and TaSe₂, respectively.

 Potential // vs.Ag/AgCl
 Potential // vs.Ag/AgCl
 Potential // vs.Ag/AgCl

 Figure S4 50 consecutive CVs of three TMS-based CE in electrolyte solution containing 2 mM LiI, 0.02 mM I₂, and 20 mM LiClO₄; the inset shows the anodic and cathodic peak current densities *versus* cycle time.
 Potential // vs.Ag/AgCl

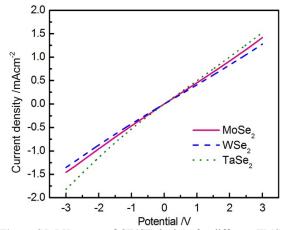


Figure S5 J-V curves of CE/CE devices for different TMSs.

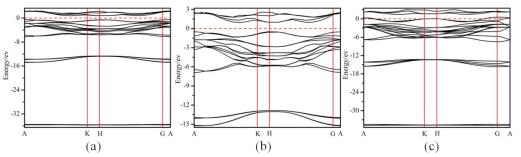


Figure S6 Band structures of the three TMSs: (a) MoSe₂, (b) WSe₂, and (c) TaSe₂.

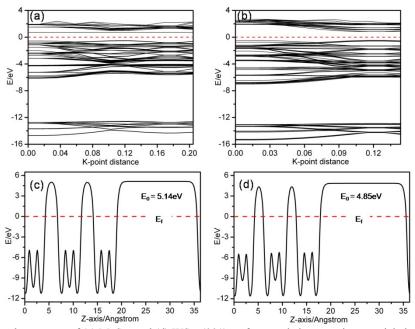


Figure S7 The band structures of (c) MoSe₂ and (d) WSe₂ (001) surfaces and electrostatic potential along Z-axis for (a) MoSe₂ and (b) WSe₂ (001) surfaces.