First Principles study of Organic sensitizers for Dye Sensitized Solar Cells: Effects of

Anchoring Groups on optoelectronic properties and Dye aggregation

Santhanamoorthi Nachimuthu, Wei-Chieh Chen, Ermias Girma Leggesse and Jyh-Chiang Jiang¹

Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, R.O.C.

¹Corresponding author Tel.: +886-2-27376653. Fax: +886-2-27376644 E-mail address: jcjiang@mail.ntust.edu.tw

Methods	L1		L2	
	λ	Exp. ^a	λ	Exp. ^a
TDB3LYP//B3LYP	560.7	404	615.6	427
TDBHandHLYP//B3LYP	441.0		483.4	
TDCAM-B3LYP//B3LYP	440.3		479.7	
TDM062X//B3LYP	445.6		485.5	
TDωB97XD//B3LYP	426.0		463.7	
TDBHandHLYP//BHandHLYP	414.9		452.2	
TDCAM-B3LYP//CAM-	414.9		449.0	
B3LYP	421.2		455.9	
TDM062X//M062X	397.1		430.6	
ΤDωB97XD//ωB97XD				

Table S1. The calculated absorption energies (λ , in nm) for the model dye L1 at different DFT functionals using 6-31G* basis set at acetonitrile medium.

^ataken from Ref.

Table S2. The calculated most representative absorption energies (λ , in nm), oscillator strengths (*f* in a.u.), and the corresponding MO transitions of designed dyes with PO₃H₂ anchoring group at TD ω B97XD// ω B97XD/6-31G* level of theory.

Dyes	State	λ	f	Transition assignment
D π-CDM	S0→S1	642.8	0.12	H-1->L+0 (67%)
	S0→S3	343.0	1.55	H-0->L+1 (28%), H-1->L+1 (25%)
Dπ- ^{CN} CDM	S0→S1	630.5	0.18	H-1->L+0 (64%), H-0->L+0 (19%)
	S0→S3	357.3	1.47	H-1->L+1 (35%), H-0->L+1 (19%)
D π-TP	S0→S1	487.7	0.84	H-0->L+0 (51%), H-1->L+0 (44%)
	S0→S3	339.5	0.35	H-1->L+0 (27%), H-0->L+0 (23%),
				H-0->L+1 (21%)
	S0→S4	300.2	0.54	H-0->L+1 (37%), H-1->L+1 (25%)
Dπ- ^{CN} TP	S0→S1	511.1	1.00	H-0->L+0 (52%), H-1->L+0 (43%)
	S0→S4	312.4	0.49	H-1->L+1 (45%), H-0->L+1 (31%)
D π-CDT	S0→S1	385.8	1.99	H-0->L+0 (43%), H-1->L+0 (42%)
Dπ- ^{CN} CDT	S0→S1	412.0	1.98	H-1->L+0 (52%), H-0->L+0 (32%)

*H and L represent HOMO and LUMO, respectively.

Table S3. The calculated most representative absorption energies (λ , in nm), oscillator strengths (*f* in a.u.), and the corresponding MO transitions of designed dyes with SO₃H anchoring group at TD ω B97XD// ω B97XD/6-31G* level of theory.

Dyes	State	λ	f	Transition assignment		
D π-CDM	S0→S1	637.3	0.14	H-1->L+0 (64%)		
	S0→S3	346.8	1.63	H-1->L+1 (26%), H-0->L+1 (24%), H-0->L+2 (21%)		
D- CNCDM	S0→S1	630.8	0.21	H-1->L+0 (61%), H-0->L+0 (19%)		
Dπ- ^{CN} CDM	S0→S3	364.7	1.48	H-1->L+1 (36%), H-0->L+1 (20%)		
Dπ-TP	S0→S1	493.9	0.91	H-0->L+0 (50%), H-1->L+0 (45%)		
	S0→S3	345.7	0.22	H-1->L+0 (30%), H-0->L+0 (28%)		
	S0→S4	302.7	0.63	H-0->L+1 (36%), H-1->L+1 (30%)		
Dπ- ^{CN} TP	S0→S1	521.9	1.06	H-0->L+0 (52%), H-1->L+0 (43%)		
	S0→S4	315.1	0.50	H-1->L+1 (47%), H-0->L+1 (29%)		
D π-CDT	S0→S1	392.7	2.02	H-1->L+0 (48%), H-0->L+0 (35%)		
Dπ- ^{CN} CDT	S0→S1	422.1	1.97	H-1->L+0 (53%), H-0->L+0 (29%)		

*H and L represent HOMO and LUMO, respectively.

Table S4. The calculated dihedral angle values (θ in degrees) between different units for the face-to-face dimeric configurations including isolated monomer and individual monomers in dimer. (See figure 8 for dihedral angle definition)

Anchoring group	Acceptor group	Type*	θ_1	θ2	θ3	
СООН		IM	0.51	0.96	-26.49	
	CDM	M1	17.06	6.36	11.67	
		M2	-12.97	-5.94	27.17	
	ТР	IM	-0.02	0.09	-1.14	
		M1	-12.24	-3.43	-10.89	
		M2	-4.19	11.71	2.73	
	CDT	IM	-0.02	0.07	-29.33	
		M1	16.56	2.99	17.59	
		M2	-13.51	-6.73	29.14	
CSSH	CDM	IM	-0.30	0.71	-26.08	
		M1	-1.04	2.34	-8.71	
		M2	-3.82	1.16	10.98	
	TP	IM	-0.12	-0.01	-1.90	
		M1	-5.85	-0.41	-7.30	
		M2	-4.42	-0.19	5.08	
	CDT	IM	1.32	1.21	-23.32	
		M1	-7.82	-1.26	-18.25	
		M2	-5.19	0.58	-4.29	

*IM, M1 and M2 are Isolated monomer dye, individual monomer dye 1 in dimer and individual monomer dye 2 in dimer, respectively.

System	Acceptor group	R1	R2	R3	R4
	CDM	4.52	5.94	3.83	1.98
	ТР	2.07	3.86	3.53	3.77
	CDT	4.52	5.92	3.83	1.99
St.	CDM	4.62	4.23	3.76	5.50
S ₂ H ₁	ТР	4.71	4.29	3.65	5.51
S ₄ ^S H ₂	CDT	3.26	4.75	4.83	5.01

Table S5. The calculated hydrogen bond distances (in Å) between individual monomers of Head-to-Head dimeric configuration of designed dyes.

R1, R2, R3 and R4 are distances of $O_1 \cdots H_2$, $O_2 \cdots H_2$, $O_3 \cdots H_1$ and $O_4 \cdots H_1$ for COOH and $S_1 \cdots H_2$, $S_2 \cdots H_2$, $S_3 \cdots H_1$ and $S_4 \cdots H_1$ for CSSH dyes.

Figure S1. Isodensity plots of selected frontier molecular orbitals of the designed dyes with different acceptors and anchoring groups containing CN. The calculations were performed by $\omega B97XD/6-31G^*$ level of theory and the isovalue is 0.02 a.u.

Figure S2. Isodensity plots of selected frontier molecular orbitals of the designed dyes with different acceptors and PO_3H_2 anchoring group. The calculations were performed by $\omega B97XD/6-31G^*$ level of theory and the isovalue is 0.02 a.u.

Figure S3. Isodensity plots of selected frontier molecular orbitals of the designed dyes with different acceptors and SO₃H anchoring group. The calculations were performed by ω B97XD/6-31G* level of theory and the isovalue is 0.02 a.u.