Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

PCCP

ARTICLE

Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption?

O. Deparis,^{a,*} S. R. Mouchet^a and B.-L. Su^b

Electronic supplementary information

Fig. S1 Optical constants of anatase TiO_2 used for simulations. The vertical dotted line indicates the TiO_2 electronic excitation wavelength. Below that wavelength (above electronic band edge), photons are absorbed by TiO_2 material.

Fig. S2. Inverse opal unit cell and its discretization into computational layers (left). The case of interpenetrating spheres (f<26%) is shown. The IO slab was cut perpendicularly to the (111) crystallographic direction. Depending on *z*-position in the unit cell, sphere cross sections in (*x*,*y*) plane either overlapped each other (layers #4, 7), touched each other (layer #6), or did not touch (layer #5). The parallelepiped unit cell (in black) had parallelogram cross section (in red) in (*x*,*y*) plane.