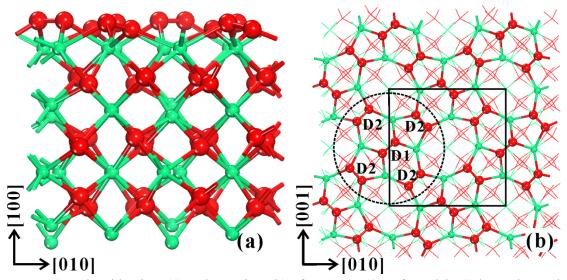
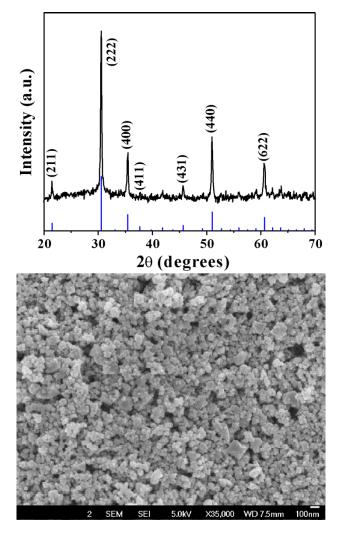
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015


A Novel Surface Modification Scheme for ITO Nanocrystals by Acetylene: A Combined Experimental and DFT Study

Zhangxian Chen,^a Yongjie Xi,^a Liang Huang,^{b,c} Wanchao Li,^a Ran Li,^a Guoqin Xu,*,^a and Hansong Cheng*,^b


^aDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

^bSustainable Energy Laboratory, China University of Geosciences Wuhan, 388 Lumo Road, Wuhan, China 430074

^cDepartment of Chemical and Petroleum Engineering, University of Wyoming, 1000 E University Avenue, Laramie, WY, USA 82071

Figure S1. The side view (a) and top view (b) of In_2O_3 (100) surface slab. Color codes: red, O; green, In. The bond lengths of D1 and D2 are 1.475 and 1.506 Å, respectively.

Figure S2. X-ray diffraction pattern and scanning electron microscopic image of ITO nanoparticles. Vertical blue lines show the standard pattern of body-centered cubic In_2O_3 (ICDD card no.: 06-0416).