The Nature of the Silicaphilic Fluorescence of PDMPO

Mithun Parambath,^a Quentin S. Hanley,^a Francisco J. Martin-Martinez,^b Tristan Giesa,^b, Markus

J. Buehler^b and Carole C. Perry^a*

^aSchool of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK

^b Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, USA.

Supplementary Information

pH determination using the sigma function of PDMPOH⁺

The sigma values (σ) obtained from Gaussian fitting relate to the full width at half maximum (FWHM) of the peak according to equation $(2\sqrt{\ln \sigma})$. This can also be used as a pH indicator. The peak width values of PDMPOH⁺ in the presence of silica diverge from the free dye at intermediate pH range but converge at high and low pH.

Figure S1: pH estimation using peak width of PDMPOH⁺

pH determination on silica in the pH range 5.4 to 9.7 using the wavelength shift of PDMPOH₂²⁺

The pH dependent chromaticity of $PDMPOH_2^{2+}$ is linear between pH 5.4 and 9.7 allowing the chromaticity of the dye in the presence of silica nanoparticles to be used as a probe of pH. In the presence of silica, the dye exhibits a blue shift from pH 2.2 (540 nm) to pH 4.5 (519nm) followed by a red shift up to pH 9.7 (531 nm). At a very high basic pH wavelengths of PDMPOH₂²⁺ for the dye by itself and on silica roughly overlap.

Figure S2: pH determination on silica in the pH range 5.4 to 9.7 using the chromaticity of $PDMPOH_2^{2+}$.