Supporting Information for

Reactive symbol sequences for a model of hydrogen combustion

Mohammad Alaghemandi¹ and Jason R. Green^{1,2,*}

¹Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA ²Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA mohammad.alaghemandi@umb.edu

*jason.green@umb.edu

SI1. STUDIED TEMPERATURES AND DENSITIES

Figure 1: Studied temperatures and densities in this work.

SI2. TIME EVOLUTION OF CHEMICAL SPECIES

Figure 2 shows the time evolution of H_2O at two different temperatures of 3000 and 6000 K and a density of 250 kg m⁻³. Increasing the temperature reduces the time to reach the maximum number of water molecules at each temperature.

Figure 2: Time evolution of H_2O number at 3000 and 6000 K and a density of 250 kg m⁻³. Doubling the *T* accelerates the time to "complete" the reaction, but also causes H_2O dissociation which decreases the net H_2O production.

The number of intermediate species at high temperatures are larger than at lower temperatures. Although all of H_2 and O_2 molecules are quickly converted to water at 6000 K, water molecules readily dissociate back to radical species. The high kinetic energy at 6000 K provides enough energy to support the existence of energetic species which are less stable at lower temperatures; see Figure 3.

Figure 3: Time evolution of average number of intermediate species at 3000 (bottom) and 6000 K (top) and a density of 250 kg m⁻³.

SI3. HYDROGEN AND OXYGEN SEQUENCES

Number of steps in the trajectory of reactants to products is the length, L, of any sequence. The temperature dependence of the chain length probability, P(L), is plotted in Figure 4 and 5 for hydrogen and oxygen sequences, respectively, for samples with density of 250 kg m⁻³. The chain length probabilities versus L at 3000 K and different densities are depicted in Figure 6 and 7 for hydrogen and oxygen sequences, respectively.

Figure 4: Chain length probability, P(L), of hydrogen at a range of temperature from 2400 to 6800 K with density of 250 kg m⁻³.

Figure 5: Chain length probability, P(L), of oxygen at a range of temperature from 2400 to 6800 K with density of 250 kg m⁻³.

Figure 6: Chain length probability, P(L), of hydrogen at 3000 K with density from 50 to 500 kg m⁻³.

Figure 7: Chain length probability, P(L), of oxygen at 3000 K with density from 50 to 500 kg m⁻³.

SI4. Elementary reactions at T=3000 K and $\rho=250$ kg m⁻³

	elementary reaction	probability
R1	$H2 + OH \rightarrow H + H2O$	0.2645
R2	$H + O2 \rightarrow HO2$	0.1935
R3	$H2O2 \rightarrow 2OH$	0.0838
R4	$H + HO2 \rightarrow H2O2$	0.0774
R5	$H2 + HO2 \rightarrow H + H2O2$	0.0516
R6	$\rm H + OH \rightarrow H2O$	0.0451
R7	$H2O2 + H \rightarrow OH + H2O$	0.0387
$\mathbf{R8}$	$\rm HO2 + OH \rightarrow O2 + H2O$	0.0258
R9	$H2 + HO2 \rightarrow OH + H2O$	0.0258
R10	$\rm HO2 \rightarrow O + OH$	0.0193
R11	$H2 + O2 \rightarrow H + HO2$	0.0193
R12	$2HO2 + OH \rightarrow O2 + H + H2O2$	0.0193
R13	$O + OH \rightarrow HO2$	0.0129
R14	$H + HO2 \rightarrow 2OH$	0.0129
R15	$H + H2O2 \rightarrow OH + H2O$	0.0129
R16	$H2O2 + OH \rightarrow HO2 + H2O$	0.0129
R17	$2OH \rightarrow H2O2$	0.0129
R18	$O2 + OH \rightarrow O + HO2$	0.0064
R19	$O2 + H \rightarrow O + OH$	0.0064
R20	$\rm HO2 + H \rightarrow 2OH$	0.0064
R21	$H + HO2 \rightarrow H2 + O2$	0.0064
R22	$H2 + O \rightarrow H + OH$	0.0064
R23	$H2O2 \rightarrow O + H2O$	0.0064
R24	$H2 + O2 \rightarrow O + H2O$	0.0064
R25	$H2O2 \rightarrow H + HO2$	0.0064
R26	$H2O2 \rightarrow H2 + O2$	0.0064
R27	$H2 + 2O2 \rightarrow 2HO2$	0.0064
R28	$2HO2 \rightarrow O2 + H2O2$	0.0064

SI5. Elementary reactions at T=6000 K and $\rho=250$ kg m⁻³

	1 / /	1 1 11.
	elementary reaction	probability
R1	$H2 + OH \rightarrow H + H2O$	0.2272
R2	$H + O2 \rightarrow HO2$	0.1439
R3	$H + OH \rightarrow H2O$	0.1439
R4	$O2 + H \rightarrow O + OH$	0.0530
R5	$H2 + O \rightarrow H + OH$	0.0530
R6	$\rm HO2 \rightarrow O + OH$	0.0454
R7	$H2 + O \rightarrow H2O$	0.0378
$\mathbf{R8}$	$H2O2 \rightarrow 2OH$	0.0303
R9	$H2 + O2 \rightarrow 2OH$	0.0303
R10	$H2 + HO2 \rightarrow 2OH + H$	0.0303
R11	$O2 + OH \rightarrow O + HO2$	0.0227
R12	$H + HO2 \rightarrow H2O2$	0.0227
R13	$H2 + HO2 \rightarrow OH + H2O$	0.0227
R14	$OH \rightarrow H + O$	0.0151
R15	$H2 + O2 \rightarrow O + H2O$	0.0151
R16	$H2 + HO2 \rightarrow H + H2O2$	0.0151
R17	$O + OH \rightarrow HO2$	0.0075
R18	$O2 + OH \rightarrow O2 + O + H$	0.0075
R19	$\rm HO2 + OH \rightarrow 2O + H2O$	0.0075
R20	$\rm HO2 + H \rightarrow 2OH$	0.0075
R21	$H + HO2 \rightarrow 2OH$	0.0075
R22	$H2 + O \rightarrow H + OH$	0.0075
R23	$H2 + O2 \rightarrow OH + H + O$	0.0075
R24	$H2O2 \rightarrow O + H2O$	0.0075
R25	$H2 + O2 \rightarrow H2O2$	0.0075
R26	$H2 + H2O2 \rightarrow OH + H + H2O$	0.0075
R27	$2OH \rightarrow H2O2$	0.0075
R28	$2H \rightarrow H2$	0.0075

SI6. TIME DEPENDENCE OF HYDROGEN AND OXYGEN SE-QUENCES

Figure 8: Average time, $\overline{\tau}$, to complete a sequence for hydrogen (top) and oxygen (bottom) at a range of temperature from 2800 to 6800 K and 250 kg m⁻³.

Figure 9: Average time, $\overline{\tau}$, to complete a sequence for hydrogen (top) and oxygen (bottom) at 3000 K and densities from 50 to 500 kg m⁻³.