## Can silicon substituted metal—free organic dyes achieve better efficiency compared to non-silicon

## organic dyes? A computational study

Abul Kalam Biswas<sup>1</sup>¶, Amitava Das<sup>2</sup>\* and Bishwajit Ganguly<sup>1</sup>¶\*

<sup>1</sup>Computation and Simulation Unit (Analytical Discipline and Centralized Instrument

Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar-364002,

India.

<sup>¶</sup>Academy of Scientific and Innovative Research, CSIR–Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat–364002, India.

<sup>2</sup> Academy of Scientific and Innovative Research, CSIR-National Chemical Laboratory,

Pune-411008, India.

\*Email:- ganguly@csmcri.org (BG), Fax: 00-91-278-2567562,

Email:- a.das@ncl.res.in (AD), Fax: 00-91-20-25902629

**Supporting Information:** 



Dye 5

Dye 6

Dye 7

Dye **8** 

**E**= -2201.69816 a.u.

**E**= -2453.04786 a.u.

**E**= -2094.18825 a.u.

**E**= -2345.53798 a.u.









Figure S1: Most stable optimized structures of the dyes 5-16 and their corresponding electronic energies.



Dye 9'Dye 10'Dye 11'Dye 12'E = -2356.93709 a.u.E = -2608.28009 a.u.E = -2249.42162 a.u.E = -2500.76452 a.u



Figure S2: Optimized structures of the least stable dyes 5-16 and their corresponding electronic energies.

**Table S1**. Calculated maximum absorption wavelength ( $\lambda_{max}/nm$ ) of the designed systems at M06-2X/6-31+G\* level of theory.

| Dves | $\lambda_{max}(nm)$ |
|------|---------------------|
| 5    | 428                 |
| 6    | 481                 |
| 7    | 488                 |
| 8    | 527                 |
| 9    | 423                 |
| 10   | 455                 |
| 11   | 485                 |
| 12   | 503                 |
| 13   | 413                 |
| 14   | 431                 |
| 15   | 473                 |
| 16   | 481                 |



Figure S3: Calculated energy levels of HOMO and LUMO for dyes 9-12.



Figure S4: Calculated energy levels of HOMO and LUMO for dyes 13-16.





Figure S5. Illustration of frontier molecule orbitals of dyes 5-16.





Figure S6: Calculated absorption spectra of dyes 9-16.



Phenyl containing dye 5

Phenyl containing dye 8

Figure S7. Phenyl containing dyes 5 and 8.

| Dyes | $\lambda_{max} (nm)$ | LHE   | $\Delta G_{\text{injection}} (\text{eV})$ | $\Delta G_{\rm reg} ({\rm eV})$ | $\mu_{\text{normal}}$ (Debye) |
|------|----------------------|-------|-------------------------------------------|---------------------------------|-------------------------------|
| 5    | 418                  | 0.979 | -1.74                                     | -0.65                           | 12.11                         |
| 8    | 501                  | 0.987 | -1.81                                     | -0.09                           | 13.99                         |



Figure S8. Optimized molecular structure of dye...I<sub>2</sub> complexes at M06-2X/6-31G\* (LANL2DZ basis set for I atom) level of theory.





Figure S9: Optimized molecular structure of dye... $I_2$  complexes at M06-2X/6-31G\* (LANL2DZ basis set for I atom) level of theory.









Dye 13@TiO2Dye 14@TiO2Dye 15@TiO2Dye 16@TiO2Figure S10: Optimized structures of the dyes 5-16@TiO2.