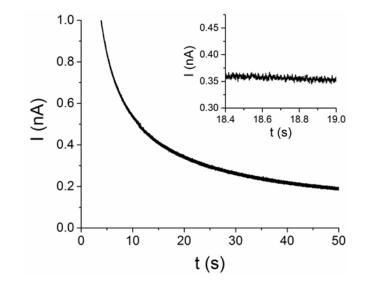
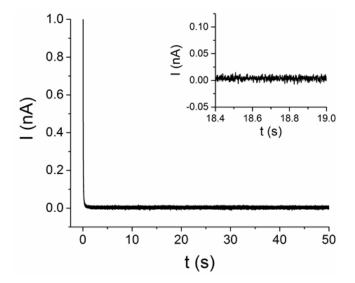
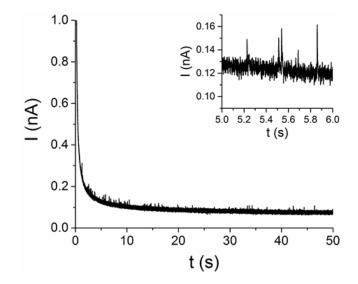
Electronic Supplementary Information


Capping agent promoted oxidation of gold nanoparticles: Cetyl trimethylammonium bromide

Blake J. Plowman,^a Kristina Tschulik,^{a*} Neil P. Young^b and Richard G. Compton^{a*}


^a Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX13QZ, United Kingdom.

^b Department of Materials, University of Oxford, Parks Road, Oxford, OX13PH, United Kingdom.


*Corresponding authors: Department of Chemistry, PTCL, University of Oxford, South Parks Road, Oxford, OX13QZ, United Kingdom, Tel: 00441865 275957, E-mail: tschulik.kristina@gmail.com, kristina.tschulik@ruhr-uni-bochum.de, richard.compton@chem.ox.ac.uk.

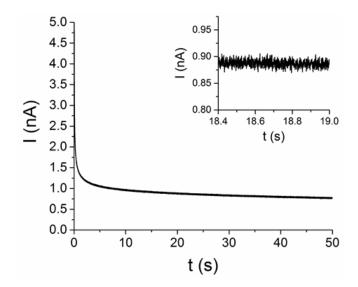

Figure S1. Chronoamperogram recorded at 0.7 V vs MSE using a carbon microcylinder electrode immersed in a solution of 0.1 M HNO_3 .

Figure S2. Chronoamperogram recorded at 0.4 V vs MSE using a carbon microcylinder electrode immersed in a solution of 0.1 M HNO_3 with 1 pM CTAB-capped gold nanoparticles.

Figure S3. Chronoamperogram recorded at 0.7 V vs MSE using a carbon microcylinder electrode immersed in a solution of 0.1 M HNO_3 with 1 pM CTAB-capped gold nanoparticles.

Figure S4. Chronoamperogram recorded at 0.7 V vs MSE using a carbon microcylinder electrode immersed in a solution of 0.1 M HNO_3 with 0.15 mM CTAB.