Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Figure S1. SORI/CID MS/MS spectra of [Mn(Pro-H)(Pro)]⁺

Figure S2. SORI/CID MS/MS spectra of [Fe(Pro-H)(Pro)]⁺

Figure S3. SORI/CID MS/MS spectra of [Co(Pro-H)(Pro)]+

Figure S4. SORI/CID MS/MS spectra of [Ni(Pro-H)(Pro)]+

Figure S5. SORI/CID spectrum of the [Cu(Pro-H)(Pro)]⁺

Figure S6. SORI/CID spectrum of the [Mg(Pro-H)(Pro)]⁺

Figure S7. SORI/CID spectrum of the [Ca(Pro-H)(Pro)]⁺

Figure S8. SORI/CID spectrum of the [Sr(Pro-H)(Pro)]⁺

Figure S9. SORI/CID spectrum of the [Ba(Pro-H)(Pro)]+

Fig. S10. IRMPD spectra for $[Cu(Pro_2-H)]^+$ and $[Ni(Pro_2-H)]^+$ compared with the computed spectra for the four NO-NO-CS structures. Structures can be seen in Figure S12a) and S13a).

NO-NO-CS

Figure S11a). Relative 298 K Gibbs energies (and enthalpies) computed at the B3LYP/6-311++G(3d,3p)//6- 31+G(d,p) (black color) and B3LYP/6- 31+G(d,p) (red color) are reported for the NO-NO-CS [Zn(Pro)₂-H]⁺ complexes.

Figure S11b). Relative 298 K Gibbs energies (and enthalpies) computed at the B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6- 31+G(d,p) (red color)are reported for the OO-NO-ZW [Zn(Pro)₂-H]⁺ complexes.

00-00-ZW

Figure S11c). Relative 298 K Gibbs energies (and enthalpies) computed at the B3LYP/6-311++G(3d,3p)//6- 31+G(d,p) (black color) and B3LYP/6- 31+G(d,p) (red color) are reported for the OO-OO-ZW [Zn(Pro)₂-H]⁺ complexes.

NO-OO-CS

Figure S11d). Relative 298 K Gibbs energies (and enthalpies) computed at the B3LYP/6-311++G(3d,3p)//6- 31+G(d,p) (black color) and B3LYP/6- 31+G(d,p) (red color)are reported for the NO-OO-CS [Zn(Pro)₂-H]⁺ complexes.

NO-NO-CS

Figure S12a). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the NO-NO-CS isomers of the [Cu(Pro)₂-H]⁺ complex. The structures are all doublets.

Figure S12b). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the OO-NO-ZW isomers of the [Cu(Pro)₂-H]⁺ complex. The structures are all doublets.

Figure S12c). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the NO-OO-CS isomers of the [Cu(Pro)₂-H]⁺ complex. The structures are all doublets.

00-00-ZW

Figure S12d). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the OO-OO-ZW isomers of the [Cu(Pro)₂-H]⁺ complex. The structures are all doublets.

Figure S13a). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the NO-NO-CS isomers of the [Ni(Pro)₂-H]⁺ complex. The structures are all singlets.

Figure S13b). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the OO-NO-ZW isomers of the [Ni(Pro)₂-H]⁺ complex. The structures are all triplets.

Figure S13c). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the NO-OO-CS isomers of the [Ni(Pro)₂-H]⁺ complex. The structures are all singlets.

Figure S13d). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the OO-OO-ZW isomers of the [Ni(Pro)₂-H]⁺ complex. The structures are all triplets.

NO-NO-CS

Figure S14a). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the NO-NO-CS isomers of the [Co(Pro)₂-H]⁺ complex. The structures are all doublets.

Figure S14b). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the OO-NO-ZW isomers of the [Co(Pro)₂-H]⁺ complex. The structures are all quartets.

00-NO-ZW

Figure S14c). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the NO-OO-CS isomers of the [Co(Pro)₂-H]⁺ complex. The structures are all quartets.

00-00-ZW

Figure S14d). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the OO-OO-ZW isomers of the [Co(Pro)₂-H]⁺ complex. The structures are all quartets.

NO-NO-CS

Figure S15a). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the NO-NO-CS isomers of the [Fe(Pro)₂-H]⁺ complex. The structures are all quintets.

Figure S15b). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the OO-NO-ZW isomers of the [Fe(Pro)₂-H]⁺ complex. The structures are all quintets.

00-NO-ZW

NO-OO-CS

Figure S15c). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the NO-OO-CS isomers of the [Fe(Pro)₂-H]⁺ complex. The structures are all quintets.

Figure S15d). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the OO-OO-ZW isomers of the [Fe(Pro)₂-H]⁺ complex. The structures are all quintets.

Figure S16a). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the NO-NO-CS isomers of the [Mn(Pro)₂-H]⁺ complex. The structures are all sextets.

00-00-ZW

Figure S16b). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the OO-OO-ZW isomers of the [Mn(Pro)₂-H]⁺ complex. The structures are all sextets.

Figure S16c). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the OO-NO-ZW isomers of the [Mn(Pro)₂-H]⁺ complex. The structures are all sextets.
00-NO-ZW

X-E-3

Figure S16d). Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) (black color) and B3LYP/6-31+G(d,p) (red color) for conformers of the NO-OO-CS isomers of the [Mn(Pro)₂-H]⁺ complex. The structures are all sextets.

Fig. S17. Comparison of the experimental IRMPD spectrum and calculated absorbance spectra of the lowest energy structures of each form of the [Fe(Pro)₂-H]⁺ in a) 1000 to 2000 cm⁻¹ region and b) 2800 to 3800 cm⁻¹ region.

Fig. S18. Comparison of the experimental IRMPD spectrum and calculated absorbance of the lowest energy structures of each form of the $[Ni(Pro)_2-H]^+$ in a) 1000 to 2000 cm⁻¹ region and b) 2800 to 3800 cm⁻¹ region.

Caculated Intensity / arbitary

Figure S19. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6- 31+G(d,p) for the lowest energy conformers of the [Mn(Pro)₂-H]⁺ complex (black color) along with same complexes containing two explicit water molecules (red color) and using a PCM model (red italics). Values in black italics are bare ion PCM model calculations. The structures are all sextets.

Figure S20. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6- 31+G(d,p) for the lowest energy conformers of the [Cu(Pro)₂-H]⁺ complex (black color) along with same complexes containing two explicit water molecules (red color) and using a PCM model (red italics). Values in black italics are bare ion PCM model calculations. The structures are all doublets.

E-E-3

Fig. S21. a. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) for conformers of the NO-NO-CS isomers of the [Mg(Pro)₂-H]⁺ complex.

Fig. S21. b. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) for conformers of the OO-NO-ZW isomers of the [Mg(Pro)₂-H]⁺ complex.

Fig. S21. c. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)// 6-31+G(d,p) for conformers of the NO-OO-CS isomers of the [Mg(Pro)₂-H]⁺ complex.

20.5(22.8)

21.4(25.8)

Fig. S21. d. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) for conformers of the OO-OO-ZW isomers of the [Mg(Pro)₂-H]⁺ complex.

Fig. S22. a. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) for conformers of the OO-OO-ZW isomers of the [Ca(Pro)₂-H]⁺ complex.

OO-NO-ZW

Fig. S22. b. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)//6-31+G(d,p) for conformers of the OO-NO-ZW isomers of the [Ca(Pro)₂-H]⁺ complex.

NO-OO-CS

Fig. S22. c. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)// 6-31+G(d,p) for conformers of the NO-OO-CS isomers of the [Ca(Pro)₂-H]⁺ complex.

NO-NO-CS

Fig. S22. d. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)// 6-31+G(d,p) for conformers of the NO-NO-CS isomers of the [Ca(Pro)₂-H]⁺ complex.

OO-NO-ZW

2.4(5.6)

E-X-3

Fig. S23. a. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)// 6-31+G(d,p) for conformers of the OO-NO-ZW isomers of the [Sr(Pro)₂-H]⁺ complex.

11.2(28.5)

Fig. S23. b. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)// 6-31+G(d,p) for conformers of the OO-OO-ZW isomers of the [Sr(Pro)₂-H]⁺ complex.

NO-OO-CS

Fig. S23. c. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)// 6-31+G(d,p) for conformers of the NO-OO-CS isomers of the [Sr(Pro)₂-H]⁺ complex.

Fig. S23. d. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)// 6-31+G(d,p) for conformers of the NO-NO-CS isomers of the [Sr(Pro)₂-H]⁺ complex.

Fig. S24. a. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)// 6-31+G(d,p) for conformers of the OO-NO-ZW isomers of the [Ba(Pro)₂-H]⁺ complex.

Fig. S24. b. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)// 6-31+G(d,p) for conformers of the OO-OO-ZW isomers of the [Ba(Pro)₂-H]⁺ complex.

X-X-3

Fig. S24. c. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)// 6-31+G(d,p) for conformers of the NO-OO-CS isomers of the [Ba(Pro)₂-H]⁺ complex.

NO-NO-CS

Fig. S24. d. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6-311++G(3d,3p)// 6-31+G(d,p) for conformers of the NO-NO-CS isomers of the $[Ba(Pro)_2 - H]^+$ complex.

Figure S25. Relative 298 K Gibbs free energies and (enthalpies) computed using B3LYP/6- 31+G(d,p) for the lowest energy conformers of the [Mg(Pro)₂-H]⁺ complex (black color) along with same complexes containing two explicit water molecules (red color).

Figure S26. Plot of standard reduction potentials and 2-electron ionization energies for the transition metals of topic to this study.

Figure S27. Comparison of the experimental IRMPD spectrum and calculated IR spectra of the lowest energy structures of each form of the $[Mg(Pro)_2 - H]^+$ complexes in the 2700 to 3800 cm⁻¹ region. Energies are B3LYPD3/cc-PVTZ 298 K Gibbs energies (and enthalpies) and in kJ mol⁻¹.

i) NO-NO-CS-X-E

Figure. S28. Comparison of the experimental IRMPD spectrum and calculated IR spectra for the lowest energy structures of each form of the $[Co(Pro)_2-H]^+$ complex in the a) 1000 to 2000 cm⁻¹ region and b) 2800 to 3800 cm⁻¹ region. Energies are UB3LYPD3/cc-pVTZ 298 K Gibbs energies (and enthalpies) and in kJ mol⁻¹.

Figure. S29. Comparison of the experimental IRMPD spectrum and calculated IR spectra for the lowest energy structures of each form of the $[Mn(Pro)_2-H]^+$ complex in the a) 1000 to 2000 cm⁻¹ region and b) 2800 to 3800 cm⁻¹ region. Energies are UB3LYPD3/cc-pVTZ 298 K Gibbs energies (and enthalpies) and in kJ mol⁻¹.

Table S1. UB3LYP/6- 31+G(d,p) relative Gibbs energies (and enthalpies) at 298 K for quartet and doublet $[Mn(Pro)_2-H]^+$ complexes corresponding. All energies are relative to the lowest energy sextet complex in Figure S16.

Structure	$\Delta_{ m rel} G(\Delta_{ m rel} H)/ m kJ~mol^{-1}$ Quartet	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ Doublet
00-00-ZW	165.4(164.4)	313.0(314.3)
00-00-ZW	166.5(160.4)	316.6(314.4)
OO-NO-ZW	122.2(113.9)	206.5(197.3)
OO-NO-ZW	122.8(115.3)	206.9(195.8)
OO-NO-ZW	124.3(116.9)	208.5(200.4)
OO-NO-ZW	125.1(118.4)	260.5(252.8)
OO-NO-ZW	133.7(127.9)	275.4(264.7)
NO-OO-CS	137.3(133.5)	329.8(320.6)
NO-NO-CS	85.0(74.4)	222.2(210.0)
NO-NO-CS	85.4(76.1)	225.8(213.6)
NO-NO-CS	86.8(74.4)	238.4(226.7)
NO-NO-CS	146.6(135.7)	247.8(238.8)
NO-NO-CS	167.2(160.7)	261.4(251.7)

Table S2. UB3LYP/6- 31+G(d,p) relative Gibbs energies (and enthalpies) at 298 K for quartet and doublet $[Fe(Pro)_2-H]^+$ complexes corresponding. All energies are relative to the lowest energy quintent complex in Figure S15.

Structure	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ Triplet	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ Singlet
00-00-ZW	122.2(120.1)	261.5(175.6)
00-00-ZW	123.8(120.1)	284.0(278.8)
00-00-ZW	121.3(115.2)	309.2(300.9)
OO-NO-ZW	78.0(70.5)	205.6(16.7)
OO-NO-ZW	77.5(65.7)	207.3(197.2)
OO-NO-ZW	79.4(68.7)	189.1(171.2)
OO-NO-ZW	77.5(65.7)	209.9(200.8)
OO-NO-ZW	79.4(68.7)	207.2(197.7)
NO-OO-CS	83.5(78.5)	240.0(228.2)
NO-OO-CS	80.7(75.0)	217.2(205.3)
NO-OO-CS	90.6(82.7)	238.5(228.6)
NO-NO-CS	29.8(15.8)	157.5(138.9)
NO-NO-CS	33.0(19.5)	156.9(136.0)
NO-NO-CS	33.3(19.4)	149.7(134.0)
NO-NO-CS	91.4(79.4)	280.4(265.6)
NO-NO-CS	101.8(92.1)	188.9(175.6)
NO-NO-CS	112.0(102.5)	204.6(185.3)

Table S3. UB3LYP/6- 31+G(d,p) relative Gibbs energies (and enthalpies) at 298 K for quartet and doublet $[Co(Pro)_2-H]^+$ complexes corresponding. All energies are relative to the lowest energy quintent complex in Figure S14.

Structure	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ Quartet	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ Doublet
00-00-ZW	64.5(86.6)	111.6(122.0)
00-00-ZW	64.8(82.6)	116.1 (124.2)
00-00-ZW	71.2(87.1)	125.3(129.8)
00-00-ZW	72.4(89.9)	124.2(129.5)
OO-NO-ZW	22.0(35.0)	50.4(52.1)
OO-NO-ZW	22.6(38.4)	50.4(53.9)
OO-NO-ZW	23.7(39.5)	52.4(55.1)
NO-OO-CS	42.2(58.5)	62.2(66.7)
NO-OO-CS	42.3(59.1)	64.3(70.3)
NO-OO-CS	51.8(67.2)	64.4(69.0)
NO-NO-CS	9.1(19.2)	0(0)
NO-NO-CS	10.0(20.0)	-0.2(1.3)
NO-NO-CS	40.5(52.4)	-0.1(0)

Table S4. UB3LYP/6- 31+G(d,p) relative Gibbs energies (and enthalpies) at 298 K for quartet and doublet [Co(Pro)2-H]+ complexes corresponding. All energies are relative to the lowest energy singlet complex in Figure S13.

Structure	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ Triplet	Δ _{rel} G(Δ _{rel} H)/kJ mol⁻¹ Singlet
00-00-ZW	107.6(128.5)	125.8(137.9)
00-00-ZW	109.1(130.2)	126.7(136.8)
00-00-ZW	109.8(131.1)	127.6(137.0)
00-00-ZW	110.7(132.6)	128.3(140.6)
00-00-ZW	128.9(148.5)	128.3(150.9)
OO-NO-ZW	55.8(72.1)	59.8(64.6)
OO-NO-ZW	56.0(73.9)	61.3(66.9)
OO-NO-ZW	57.9(77.2)	61.9(67.6)
OO-NO-ZW	59.1(77.6)	63.7(70.0)
OO-NO-ZW	61.5(79.6)	104.6(117.9)
NO-OO-CS	75.8(94.1)	69.9(77.3)
NO-OO-CS	88.8(107.0)	70.1(77.7)
NO-OO-CS	90.3(108.2)	70.7(77.4)
NO-OO-CS	91.1(107.6)	71.3(79.2)
NO-NO-CS	27.6(36.1)	0(0)
NO-NO-CS	27.6(40.2)	0.6(1.8)
NO-NO-CS	28.2(34.6)	0.9(1.5)
NO-NO-CS	65.0(80.8)	1.1(3.3)

Table. S5 Topological Analysis of the lowest energy $[Mn(Pro)_2 - H]^+$ structures.

$[Mn(Pro)_2-H]^+$

Electron densities ρ (e a.u.⁻³), Laplacian of the charge density $\nabla^2 \rho$ (e a.u.⁻⁵) and ellipticity ε at the bond critical points, computed for geometries optimized at the B3LYP/6-31+G(d,p) level

Bond	ρ	$ abla^2 ho$	ε
N(1) – H(33)	0.342	-1.796	0.0332
O(14) – H(32)	0.350	-2.098	0.0129
C(25) - O(31)	0.414	0.075	0.1207
C(25) - O(30)	0.321	-0.454	0.0058
C(23) – H(29)	0.282	-0.997	0.0082
C(23) – H(28)	0.282	-0.993	0.0127
C(22) – H(26)	0.280	-0.981	0.0022
C(19) - C(25)	0.248	-0.584	0.0937
H(4) - O(30)	0.011	0.037	0.2549
O(30) - Mn(34)	0.099	0.559	0.0867
C(19) – H(24)	0.284	-1.014	0.0381
C(19) - C(23)	0.237	-0.521	0.0329
C(22) – H(27)	0.278	-0.952	0.0080
C(18) – H(21)	0.284	-1.018	0.0268
C(22) - C(23)	0.241	-0.537	0.0033
C(18) – H(20)	0.283	-0.998	0.0301
C(18) - C(22)	0.249	-0.576	0.0188
N(17) - C(19)	0.231	-0.531	0.0266
N(17) - C(18)	0.242	-0.605	0.0366
H(16) - N(17)	0.341	-1.779	0.0282
N(17) - Mn(34)	0.071	0.271	0.0288
C(9) - O(14)	0.327	-0.359	0.0065
C(9) - O(15)	0.391	-0.068	0.0591
O(15) - Mn(34)	0.058	0.281	0.0762
C(7) - H(13)	0.283	-1.010	0.0086
C7() – H(12)	0.280	-0.973	0.0119
C(6) - H(11)	0.279	-0.963	0.0090
C6() – H(10)	0.281	-0.995	0.0008
C(3) - C(9)	0.265	-0.678	0.1125
C(3) - H(8)	0.285	-1.024	0.0303
C(3) - C(7)	0.234	-0.509	0.0165
C(2) – H(5)	0.285	-1.029	0.0321
C(6) - C(7)	0.243	-0.548	0.0013
C(2) – H(4)	0.289	-1.071	0.0317
C(2) - C(6)	0.249	-0.577	0.0223
N(1) - C(3)	0.251	-0.625	0.0155
N(1) - Mn(34)	0.059	0.211	0.0447
N(1) - C(2)	0.230	-0.540	0.0364

Table. S6 Topological Analysis of the lowest energy $[Fe(Pro)_2-H]^+$ structures.

$[Fe(Pro)_2-H]^+$

Electron densities ρ (e a.u.⁻³), Laplacian of the charge density $\nabla^2 \rho$ (e a.u.⁻⁵) and ellipticity ε at the bond critical points, computed for geometries optimized at the B3LYP/6-31+G(d,p) level

Bond	ρ	$ abla^2 ho$	3
N(1) - Fe(34)	0.065	0.210	0.1184
N(1) - C(2)	0.231	-0.548	0.0332
N(1) - C(3)	0.253	-0.640	0.0159
C(2) - C(6)	0.249	-0.577	0.0230
C(2) - H(4)	0.289	-1.064	0.0325
C(6) - C(7)	0.243	-0.546	0.0014
C(2) - H(5)	0.286	-1.038	0.0309
C(6) – H(11)	0.279	-0.964	0.0092
C(3) - C(7)	0.234	-0.509	0.0154
C(3) - H(8)	0.284	-1.024	0.0295
C(3) - C(9)	0.266	-0.681	0.1126
C(6) - H(10)	0.281	-0.994	0.0011
C(7) - H(12)	0.280	-0.968	0.0122
C(7) – H(13)	0.283	-1.011	0.0086
O(15) - Fe(34)	0.065	0.321	0.1874
C(9) - O(15)	0.388	-0.078	0.0581
C(9) - O(14)	0.328	-0.348	0.0055
O(14) – H(32)	0.349	-2.099	0.0128
N(17) – Fe(34)	0.076	0.260	0.0745
H(16) - N(17)	0.342	-1.791	0.0293
N(17) - C(18)	0.242	-0.601	0.0343
N(17) - C(19)	0.232	-0.533	0.0269
C(18) – H(20)	0.283	-0.997	0.0309
C(22) - C(23)	0.243	-0.545	0.0032
C(18) – H(21)	0.284	-1.020	0.0267
C(22) – H(27)	0.278	-0.953	0.0073
C(18) - C(22)	0.249	-0.576	0.0196
C(19) - C(23)	0.238	-0.527	0.0281
C(19) – H(24)	0.286	-1.024	0.0386
H(4) - O(30)	0.010	0.036	0.3789
O(30) - Fe(34)	0.115	0.629	0.0867
C(19) – C(25)	0.253	-0.605	0.0959
C(22) – H(26)	0.280	-0.981	0.0026
C(23) – H(28)	0.281	-0.975	0.0125
C(23) – H(29)	0.283	-1.004	0.0060
C(25) - O(30)	0.315	-0.464	0.0054
C(25) – O(31)	0.416	0.091	0.1236
N(1) – (H33)	0.343	-1.802	0.0330
Table. S7 Topological Analysis of the lowest energy $[Co(Pro)_2 - H]^+$ structures.

$[Co(Pro)_2 - H]^+$

Bond	ρ	$ abla^2 ho$	3
N(1) – Co(34)	0.0928	0.482	0.116
N(1) - C(2)	0.2386	-0.591	0.019
N(1) - C(3)	0.2536	-0.639	0.014
C(2) - C(6)	0.2501	-0.581	0.022
C(2) - H(4)	0.2851	-1.020	0.033
C(6) - C(7)	0.2417	-0.540	0.003
C(2) – H(5)	0.2886	-1.071	0.025
C(6) – H(11)	0.2791	-0.965	0.009
C(3) - C(7)	0.2320	-0.500	0.014
C(3) - H(8)	0.2837	-1.022	0.027
C(3) - C(9)	0.2671	-0.691	0.108
C(7) – H(13)	0.2833	-1.012	0.010
C(6) – H(10)	0.2807	-0.992	0.002
C(7) – H(12)	0.2802	-0.972	0.013
O(15) – Co(34)	0.0811	0.459	0.685
C(9) – O(15)	0.3859	-0.160	0.057
C(9) – O(14)	0.3305	-0.331	0.003
N(17) – Co(34)	0.1013	0.497	0.116
H(16) - N(17)	0.3419	-1.800	0.024
N(17) - C(18)	0.2364	-0.572	0.005
N(17) – C(19)	0.2362	-0.562	0.027
C(18) – H(21)	0.2843	-1.013	0.030
C(18) – H(20)	0.2847	-1.018	0.032
C(18) - C(22)	0.2484	-0.575	0.017
C(22) - C(23)	0.2428	-0.544	0.001
C(19) - C(23)	0.2450	-0.557	0.022
C(19) – H(24)	0.2844	-1.021	0.035
O(30) – Co(34)	0.1338	0.743	0.434
C(19) - C(25)	0.2540	-0.612	0.095
C(23) – H(28)	0.2831	-1.016	0.003
C(22) – H(26)	0.2785	-0.957	0.009
C(22) – H(27)	0.2805	-0.985	0.004
C(23) – H(29)	0.2793	-0.964	0.012
N(1) – H(33)	0.3410	-1.811	0.028
C(25) - O(30)	0.3145	-0.542	0.002
C(25) – O(31)	0.4175	0.123	0.116
O(14) - H(32)	0.3487	-2.098	0.012

Table. S8 Topological Analysis of the lowest energy $[Ni(Pro)_2 - H]^+$ structures.

$[Ni(Pro)_2 - H]^+$

Bond	ρ	$ abla^2 ho$	ε
N(1) - C(2)	0.237	-0.584	0.014
N(1) - Ni(34)	0.091	0.376	0.101
N(1) - C(3)	0.251	-0.629	0.009
C(2) - H(4)	0.291	-1.099	0.026
C(2) - H(5)	0.284	-1.008	0.033
C(2) - C(6)	0.252	-0.591	0.022
C(7) - H(13)	0.283	-0.999	0.014
C(3) - C(7)	0.228	-0.486	0.019
C(6) - C(7)	0.241	-0.539	0.002
C(3) - H(8)	0.285	-1.036	0.028
C(3) - C(9)	0.267	-0.690	0.110
C(6) - H(10)	0.278	-0.954	0.010
C(6) - H(11)	0.281	-0.996	0.002
C(7) - H(12)	0.282	-0.996	0.013
O(14) – Ni(34)	0.076	0.458	0.037
C(9) - O(14)	0.387	-0.107	0.075
C(9) – O(15)	0.329	-0.342	0.003
N(17) – Ni(34)	0.107	0.430	0.100
H(16) - N(17)	0.342	-1.805	0.022
N(17) - C(18)	0.235	-0.566	0.003
N(17) - C(19)	0.235	-0.556	0.026
C(18) – H(21)	0.284	-1.014	0.031
C(18) – H(20)	0.286	-1.027	0.032
C(18) - C(22)	0.249	-0.577	0.017
C(22) - C(23)	0.243	-0.543	0.001
C(23) – H(29)	0.279	-0.965	0.012
C(19) - C(23)	0.245	-0.558	0.022
C(19) – H(24)	0.285	-1.024	0.036
O(30) – Ni(34)	0.130	0.709	0.077
H(4) - O(30)	0.013	0.050	0.416
C(19) - C25)	0.255	-0.616	0.095
C(23) – H(28)	0.283	-1.016	0.003
C(22) – H(26)	0.279	-0.958	0.009
C(22) – H(27)	0.281	-0.987	0.004
N(1) - H(33)	0.340	-1.806	0.024
C(25) – O(30)	0.316	-0.498	0.015
C(25) – O(31)	0.417	0.104	0.114
O(15) - H(32)	0.349	-2.098	0.013

Table. S9 Topological Analysis of the lowest energy $[Cu(Pro)_2 - H]^+$ structures.

$[Cu(Pro)_2-H]^+$

Bond	ρ	$ abla^2 ho$	3
N(1) - C(2)	0.239	-0.592	0.0163
N(1) - Cu(34)	0.081	0.233	0.0089
N(1) - C(3)	0.255	-0.655	0.0147
C(2) - H(4)	0.290	-1.097	0.0266
C(2) - H(5)	0.283	-1.007	0.0329
C(2) - C(6)	0.252	-0.590	0.0222
C(3) - C(7)	0.228	-0.483	0.0191
C(6) - C(7)	0.241	-0.538	0.0012
C(3) – H(8)	0.285	-1.035	0.0278
C(3) - C(9)	0.265	-0.678	0.1095
C(6) – H(10)	0.277	-0.944	0.0108
C(7) – H(13)	0.283	-1.000	0.0138
C(6) – H(11)	0.281	-0.997	0.0018
C(7) – H(12)	0.282	-0.995	0.0129
O(14) – Cu(34)	0.070	0.290	0.0102
C(9) – O(14)	0.391	-0.089	0.0598
C(9) - O(15)	0.327	-0.351	0.0093
N(17) – Cu(34)	0.094	0.268	0.0195
H(16) - N(17)	0.342	-1.801	0.0262
N(17) - C(18)	0.236	-0.573	0.0065
N(17) - C(19)	0.237	-0.571	0.0302
C(18) – H(21)	0.285	-1.015	0.0301
C(18) – H(20)	0.285	-1.017	0.0333
C(18) - C(22)	0.248	-0.573	0.0171
C(22) - C(23)	0.243	-0.543	0.0011
C(19) – C(23)	0.245	-0.557	0.0226
C(19) – H(24)	0.284	-1.021	0.0358
O(30) – Cu(34)	0.115	0.489	0.0121
H(4) – O(30)	0.013	0.048	0.2998
C(19) – C(25)	0.251	-0.596	0.0954
C(23) – H(28)	0.283	-1.019	0.0032
C(22) – H(26)	0.278	-0.955	0.0093
C(22) – H(27)	0.281	-0.986	0.0044
C(23) – H(29)	0.279	-0.963	0.0120
C(25) – O(30)	0.321	-0.464	0.0060
C(25) – O(31)	0.414	0.083	0.1099
O(15) – H(32)	0.350	-2.099	0.0130
N(1) – H(33)	0.340	-1.800	0.0278

Table. S10 Topological Analysis of the lowest energy $[Zn(Pro)_2-H]^+$ structures.

$[Zn(Pro)_2 - H]^+$

H32 014	Bond	ρ	$ abla^2 ho$	Е
C9 015 H20 H26	N(1) - Zn(34)	0.0792	0.227	0.0191
H13 HZ18 CH28	N(1) - C(2)	0.2267	-0.522	0.0353
H48 C3	N(1) - C(3)	0.2500	-0.629	0.0088
Zh34 N17 H29	C(2) - H(4)	0.2904	-1.083	0.0321
H 3 030 H16 C19 C25	C(2) - H(5)	0.2859	-1.034	0.0338
H11 C5 C7 11 1831	C(2) - C(6)	0.2486	-0.576	0.0222
H10 H5	C(6) - C(7)	0.2433	-0.547	0.0006
e	C(3) - C(7)	0.2354	-0.515	0.0176
	C(3) - H(8)	0.2852	-1.030	0.0307
	C(3) - C(9)	0.2643	-0.673	0.1114
	C(6) - H(10)	0.2813	-0.998	0.0016
	C(6) - H(11)	0.2794	-0.966	0.0098
	C(7) - H(12)	0.2804	-0.978	0.0116
	C(7) - H(13)	0.2831	-1.012	0.0087
	O(15) - Zn(34)	0.0644	0.259	0.0268
	C(9) - O(15)	0.3930	-0.068	0.0619
	C(9) – O(14)	0.3271	-0.359	0.0066
	N(17) - Zn(34)	0.0896	0.247	0.0074
	H(16) – N(17)	0.3425	-1.800	0.0260
	N(17) - C(18)	0.2378	-0.583	0.0320
	N(17) - C(19)	0.2274	-0.511	0.0258
	C(18) – H(20)	0.2849	-1.015	0.0316
	C(22) - C(23)	0.2435	-0.547	0.0033
	C(18) - H(21)	0.2846	-1.022	0.0286
	C(18) - C(22)	0.2495	-0.579	0.0201
	C(19) – C(23)	0.2396	-0.533	0.0298
	C(19) – H(24)	0.2858	-1.026	0.0409
	O(30) - Zn(34)	0.1061	0.429	0.0427
	H(4) - O(30)	0.0115	0.040	0.4892
	C(19) - C(25)	0.2470	-0.577	0.0919
	C(23) - H(29)	0.2829	-1.008	0.0055
	C(22) - H(26)	0.2799	-0.981	0.0031
	C(22) – H(27)	0.2780	-0.954	0.0075
	C(23) – H(28)	0.2802	-0.973	0.0131
	C(25) - O(30)	0.3247	-0.448	0.0127
	C(25) - O(31)	0.4131	0.053	0.1218
	O(14) – H(32)	0.3494	-2.100	0.0129
	N(1) - H(33)	0.3425	-1.806	0.0295

Table. S11 Topological Analysis of the lowest energy $[Mg(Pro)_2 - H]^+$ structures.

[Mg(Pro)₂-H]⁺

Bond	ρ	$ abla^2 ho$	Е
N(1) - C(2)	0.229	-0.531	0.0372
N(1) - C(3)	0.251	-0.626	0.0168
N(1) - Mg(34)	0.036	0.213	0.0357
C(2) - H(4)	0.289	-1.074	0.0317
C(6) - C(7)	0.243	-0.547	0.0011
C(2) - H(5)	0.286	-1.032	0.0323
C(2) - C(6)	0.249	-0.577	0.0228
C(3) - C(7)	0.233	-0.506	0.0158
C(3) - H(8)	0.285	-1.028	0.0300
C(3) - C(9)	0.265	-0.678	0.1135
C(6) - H(10)	0.281	-0.997	0.0009
C(6) – H(11)	0.279	-0.964	0.0094
C(7) - H(12)	0.280	-0.972	0.0124
C(7) - H(13)	0.283	-1.012	0.0090
C(9) – O(15)	0.388	-0.100	0.0473
C(9) - O(14)	0.329	-0.343	0.0074
O(15) - Mg(34)	0.040	0.288	0.0115
N(17) – Mg(34)	0.043	0.267	0.0397
H(16) - N(17)	0.342	-1.785	0.0318
N(17) - C(18)	0.232	-0.541	0.0140
N(17) - C(19)	0.230	-0.524	0.0378
C(18) - H(21)	0.285	-1.018	0.0298
C(18) - H(20)	0.283	-0.999	0.0345
C(18) - C(22)	0.245	-0.558	0.0164
C(22) - C(23)	0.243	-0.545	0.0010
C(19) - C(23)	0.247	-0.567	0.0230
C19) – H(24)	0.283	-1.006	0.0372
O(30) – Mg(34)	0.061	0.513	0.0573
H(4) - O(30)	0.011	0.039	0.2571
C(19) – C(25)	0.242	-0.553	0.0923
C(22) – H(26)	0.279	-0.965	0.0103
C(22) – H(27)	0.280	-0.981	0.0062
C(23) – H(28)	0.284	-1.025	0.0018
C(23) – H(29)	0.278	-0.952	0.0116
C(25) – O(30)	0.327	-0.438	0.0071
C(25) – O(31)	0.412	0.060	0.1177
O(14) – H(32)	0.349	-2.100	0.0125
N(1) - H(33)	0.342	-1.790	0.0348

Table. S12 Topological Analysis of the lowest energy $[Ca(Pro)_2 - H]^+$ structures.

$[Ca(Pro)_2 - H]^+$

H30 H29	Bond	ρ	$ abla^2 ho$	ε
H23 H25 H31	C(1) - C(2)	0.242	-0.544	0.0242
H20 dt21 6 09 07 H24 H26	C(2) - N(3)	0.227	-0.522	0.0187
	N(3) - C(4)	0.224	-0.515	0.0123
H12 H,3 H,3 H24	C(1) - C(5)	0.242	-0.540	0.0015
	C(4) - C(5)	0.249	-0.579	0.0194
	C(2) - C(6)	0.254	-0.616	0.0953
	O(8) - Ca(33)	0.030	0.142	0.0032
	C(6) - O(7)	0.380	-0.238	0.0613
	C(6) - O(8)	0.362	-0.333	0.0332
	O(7) - Ca(33)	0.032	0.155	0.0342
	N(3) - H(32)	0.323	-1.751	0.0022
	O(9) - Ca(33)	0.043	0.225	0.0487
	O(9) - C(10)	0.357	-0.361	0.0102
	C(10) - O(11)	0.355	-0.341	0.0052
	C(10) - C(12)	0.261	-0.651	0.0997
	O(11) - Ca(33)	0.042	0.219	0.0448
	N(13) - C(14)	0.263	-0.714	0.0412
	C(12) - N(13)	0.272	-0.733	0.0629
	C(14) - H(18)	0.283	-1.005	0.0273
	C(12) - C(16)	0.232	-0.502	0.0166
	C(15) - H(21)	0.279	-0.958	0.0039
	C(14) - C(15)	0.248	-0.575	0.0212
	C(15) - C(16)	0.243	-0.543	0.0033
	C(14) - H(17)	0.276	-0.936	0.0264
	C(12) - H(19)	0.282	-0.988	0.0351
	C(15) - H(20)	0.279	-0.961	0.0014
	C(16) - H(22)	0.277	-0.941	0.0076
	C(16) - H(23)	0.281	-0.984	0.0056
	N(13) – H(24)	0.343	-1.785	0.0502
	C(4) - H(25)	0.288	-1.067	0.0330
	C(4) - H(26)	0.288	-1.053	0.0346
	C(2) – H(27)	0.287	-1.056	0.0384
	C(5) – H(28)	0.280	-0.973	0.0125
	C(5) - H(29)	0.282	-1.003	0.0047
	C(1) - H(30)	0.283	-1.021	0.0073
	C(1) - H(31)	0.281	-0.985	0.0146
ŀ	O(8) - H(32)	0.035	0.111	0.10/1
	N(3) - H(34)	0.340	-1.852	0.0029

Table. S13 Topological Analysis of the lowest energy $[Sr(Pro)_2 - H]^+$ structures.

$[Sr(Pro)_2-H]^+$

	Sr34	015		Bond	ρ	$ abla^2 ho$	3
H16	. 030	$\backslash \cdot \land$		N(1) - (C2)	0.224	-0.502	0.0356
H24		014 C9	H32	N(1) - (C3)	0.230	-0.547	0.0042
C19 dt	8025		NI	C(2) - (H4)	0.290	-1.113	0.0291
H27	Ter	••••H4	на наз	C(2) - (H5)	0.286	-1.045	0.0376
H29 C43	031	H12 C7	H5	C(2) - (C6)	0.252	-0.597	0.0199
H28		HA3		C(3) - (C7)	0.238	-0.535	0.0306
			5	C(6) – (C7)	0.239	-0.534	0.0076
		н	¥10	C(3) – (C9)	0.254	-0.621	0.0847
				C(3) – (H8)	0.285	-1.036	0.0365
				N(1) - H(33)	0.342	-1.850	0.0013
Bond	ρ	$\nabla^2 \rho$	ε	C(6) - H(10)	0.278	-0.955	0.0155
C(25) - O(30)	0 336	-0 342	0.003	C(6) - H(11)	0.284	-1.031	0.0014
H(28) - O(31)	0.016	0.065	2.574	H(12) - O(31)	0.008	0.029	0.2886
C(25) - O(31)	0.395	0.090	0.085	C(7) - H(12)	0.286	-1.029	0.0120
N(1) - H(32)	0.327	-1.782	0.004	C(7) - H(13)	0.282	-0.996	0.0139
O(14) - Sr(34)	0.036	0.154	0.040	C(9) – O(14)	0.374	-0.150	0.0564
O(15) - Sr(34)	0.032	0.139	0.035	O(15) – H(32)	0.031	0.101	0.1825
O(30) - Sr(34)	0.055	0.256	0.082	C(9) - O(15)	0.363	-0.219	0.0405
				N(17) – Sr(34)	0.031	0.109	0.0223
				H(16) – N(17)	0.340	-1.746	0.0351
				O(14) – H(20)	0.008	0.028	0.1539
				N(17) - C(18)	0.249	-0.646	0.0413
				N(17) - C(19)	0.243	-0.595	0.0286
				C(18) - H(20)	0.284	-1.014	0.0272
				C(18) - H(21)	0.282	-0.998	0.0267
				C(18) - C(22)	0.247	-0.570	0.0185
				C(22) - C(23)	0.236	-0.519	0.0028
				C(19) - C(23)	0.241	-0.539	0.0273
				C(19) - C(25)	0.246	-0.579	0.0754
				C(19) - H(24)	0.283	-0.999	0.0253
				H(4) - O(31)	0.010	0.036	0.1792
				H(11) – O(31)	0.009	0.033	0.3380
				C(22) – H(26)	0.280	-0.974	0.0020
				C(22) – H(27)	0.278	-0.954	0.0084
				C(23) – H(28)	0.284	-1.012	0.0071
				C(23) – H(29)	0.280	-0.970	0.0127
				H(4) - O(30)	0.009	0.030	0.1771

Table. S14 Topological Analysis of the lowest energy $[Ba(Pro)_2 - H]^+$ structures.

$[Ba(Pro)_2-H]^+$

Bond	ρ	$ abla^2 ho$	3
C(25) - O(31)	0.395	0.076	0.087
N(1) - H(32)	0.310	-1.659	0.002
N(1) - H(33)	0.341	-1.852	0.005
O(14) - Ba(34)	0.034	0.132	0.037
O(15) - Ba(34)	0.036	0.138	0.046
N(17) – Ba(34)	0.028	0.090	0.023
O(30) – Ba(34)	0.043	0.173	0.072

Bond	ρ	$ abla^2 ho$	8
N(1) - C(2)	0.228	-0.544	0.026
N(1) - C(3)	0.232	-0.554	0.010
C(2) - H(4)	0.292	-1.106	0.029
C(2) - H(5)	0.287	-1.040	0.037
C(2) - C(6)	0.241	-0.549	0.022
C(3) - C(7)	0.252	-0.598	0.024
C(6) - C(7)	0.241	-0.539	0.004
C(3) - C(9)	0.257	-0.639	0.054
C(3) - H(8)	0.285	-1.027	0.028
C(9) - O(30)	0.011	0.039	0.748
C(6) - H(10)	0.282	-1.003	0.007
C(6) - H(11)	0.281	-0.974	0.013
C(7) - H(12)	0.283	-0.999	0.010
C(7) – H(13)	0.281	-0.993	0.005
C(9) - O(14)	0.370	-0.159	0.061
C(9) - O(15)	0.365	-0.225	0.053
H(16) - N(17)	0.341	-1.756	0.038
O(14) – H(20)	0.009	0.030	0.093
N(17) - C(18)	0.242	-0.602	0.035
N(17) - C(19)	0.249	-0.628	0.038
C(18) – H(20)	0.286	-1.024	0.030
C(18) – H(21)	0.283	-1.003	0.029
H(12) - H(26)	0.002	0.007	0.520
C(18) - C(22)	0.237	-0.527	0.019
C(22) - C(23)	0.240	-0.535	0.002
C(19) - C(23)	0.249	-0.578	0.017
C(19) – C(25)	0.249	-0.600	0.072
C(19) – H(24)	0.281	-0.991	0.023
H(4) - O(31)	0.012	0.041	0.231
H(12) - O(31)	0.007	0.026	0.208
C(22) – H(26)	0.281	-0.977	0.010
C(22) – H(27)	0.280	-0.977	0.007
C(23) – H(28)	0.283	-1.010	0.001
C(23) – H(29)	0.278	-0.951	0.010
O(30) – H(32)	0.041	0.105	0.050
C(25) - O(30)	0.333	-0.345	0.003

Table S15. Comparison of the three levels calculations, UB3LYPD3/6-311++G(3d,3p)//6-31+G(d,p), UB3LYPD3/6-31+G(d,p), and UB3LYPD3/cc-PVTZ, relative Gibbs energies (and enthalpies) of the lowest energy structures of each forms of the [Co(Pro)2-H]+ complex at 298 K.

Structure	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ B3LYP/6- 311++G(3d,3p)// 6-31+G(d,p	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ B3LYP/6-31+G(d,p)	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ UB3LYP/cc-PVTZ
Co-NO-NO-CS-X-E	0(0)	0(0)	0(0)
Co-OO-NO-ZW-E-E	16.9(29.9)	22.0(35.0)	17.1(29.4)
Co- NO-OO-CS-X-X	31.6(47.9)	42.2(58.5)	31.2(47.8)
Co- OO-OO-ZW-E-X	55.0(77.1)	64.5(86.6)	55.0(76.1)

Table S16. Comparison of the three levels calculations, UB3LYPD3/6-311++G(3d,3p)//6-31+G(d,p), UB3LYPD3/6-31+G(d,p), and UB3LYPD3/cc-PVTZ, relative Gibbs energies (and enthalpies) of the lowest energy structures of each forms of the [Mn(Pro)2-H]+ complex at 298K.

Structure	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ B3LYP/6- 311++G(3d,3p)// 6-31+G(d,p	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ B3LYP/6-31+G(d,p)	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ UB3LYP/cc-PVTZ
Mn-NO-NO-CS-X-X	0(0)	0(0)	0(0)
Mn- OO-NO-ZW-E-X	9.2(11.4)	8.4(10.6)	8.9(10.5)
Mn- NO-OO-CS-X-X	23.6(28.7)	28.6(33.7)	24.1(28.1)
Mn- 00-00-ZW-E-X	29.7(36.1)	33.8(40.2)	29.6(35.1)

Table S17. Comparison of the three levels calculations , B3LYPD3/6-311++G(3d,3p)//6-31+G(d,p), B3LYPD3/6-31+G(d,p), and B3LYPD3/cc-PVTZ, relative Gibbs energies (and enthalpies) of the lowest energy structures of each forms of the [Mg(Pro)2-H]+ complex at 298 K.

Structure	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ B3LYP/6- 311++G(3d,3p)// 6-31+G(d,p	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ B3LYP/6-31+G(d,p)	Δ _{rel} G(Δ _{rel} H)/kJ mol ⁻¹ UB3LYP/cc-PVTZ
Mg-NO-NO-CS-X-E	0(0)	0(0)	0(0)
Mg-OO-NO-ZW-E-X	7.8(7.2)	6.0(5.4)	2.1(7.3)
Mg-NO-OO-CS-X-X	16.3(17.7)	19.3(20.7)	13.2(17.8)
M-00-00-ZW-E-X	20.5(22.8)	21.0(23.3)	15.9(22.5)

1 0			
Ν	-1.96482300	-0.38702200	-1.08455200
С	-2.16409700	-1.86462100	-0.76489900
С	-3.01720900	0.37758900	-0.33424100
Н	-1.40055000	-2.16429900	-0.04270600
Н	-2.02663700	-2.44826600	-1.67713300
С	-3.56582600	-1.95375400	-0.16009600
С	-3.66978000	-0.64561400	0.63393400
Н	-3.77480900	0.77010600	-1.02092800
С	-2.40887500	1.55041000	0.40020000
Н	-3.68449000	-2.83635600	0.47273800
Н	-4.33215100	-1.98919300	-0.94290900
Н	-3.08747200	-0.71512100	1.56002000
Н	-4.68878900	-0.35273000	0.89093400
0	-3.30193900	2.33957400	0.95773400
0	-1.19100000	1.74598000	0.49500100
Н	2.35318700	0.58331100	-1.89999100
Ν	2.12047800	0.52703100	-0.90814900
С	2.74771800	1.72752800	-0.24799300
С	2.85798000	-0.68519400	-0.33955000
Н	2.27750400	1.86029100	0.73367300
Н	2.55728000	2.62064600	-0.84802800
С	4.21952900	1.34419400	-0.09561200
С	4.14623500	-0.13308300	0.33031900
Н	3.09261500	-1.35018300	-1.17585000
С	1.98973400	-1.51122400	0.64251800
Н	4.74092200	1.97002700	0.63310900
Н	4.73164500	1.45510600	-1.05900500
Н	4.05847300	-0.22579100	1.41606000
Н	5.02605700	-0.70508100	0.03191100
0	0.70914300	-1.18933300	0.69364200
0	2.52036000	-2.39949000	1.27718600
Н	-2.86701700	3.06150800	1.44937200
Н	-2.12950500	-0.24997900	-2.07984200
Mn	0.05436700	0.26098800	-0.41074000

16

1 6	
Ν	4.18395800 -0.29959200 -1.05811500
С	4.95201500 0.92084200 -0.54442800
С	3.50802200 -0.97716500 0.13613900
Н	4.84454000 1.73084700 -1.26657700
Н	6.00282500 0.63292800 -0.47213800
С	4.33535200 1.18119200 0.83048900
С	4.05947600 -0.23328300 1.36539400
Н	3.73527700 -2.04541400 0.13062200
С	2.00156400 -0.78107300 -0.05366900
Н	3.40595900 1.75289200 0.73450800
Н	5.01478800 1.75086000 1.46766600
Н	3.33889200 -0.26201800 2.18415100
Н	4.98442900 -0.70948500 1.70515100
0	1.21637500 -1.13396600 0.86383500
0	1.59501200 -0.22836900 -1.12527800
Н	-2.60418500 -1.26300000 -1.51231400
Ν	-2.46210900 -0.80812000 -0.61008900
С	-3.08462000 -1.69881700 0.43034200
С	-3.29640300 0.46911600 -0.60669100
Н	-2.69427500 -1.40039700 1.41072000
Н	-2.80098700 -2.73795800 0.24640800
С	-4.58144300 -1.40277700 0.33086200
С	-4.61695700 0.12403400 0.13548800
Н	-3.47854100 0.74774300 -1.64880800
С	-2.55046800 1.66596600 0.03725200
Н	-5.13195400 -1.72996000 1.21671600
Н	-5.00355300 -1.92446000 -0.53669700
Н	-4.63732300 0.64455400 1.09639200
Н	-5.49013500 0.45871300 -0.42677500
0	-1.26048700 1.49221400 0.25688700
0	-3.17846000 2.67746300 0.27745700
Н	3.39535000 -0.01833000 -1.67308700
Н	4.78573000 -0.93795900 -1.58118900
Mn	-0.44234100 -0.20010000 -0.15790400

1 6		
Ν	-1.92929200 0.71325700 0.89620800	
С	-1.58808700 2.05518800 0.27758600	
С	-3.31680900 0.35643100 0.44447900	
Н	-1.00683800 1.88044100 -0.63382700	
Н	-0.96510100 2.62230000 0.97144700	
С	-2.94038300 2.69072600 -0.04442400	
С	-3.76607100 1.48891700 -0.52337100	
Н	-3.99457600 0.30264700 1.30272000	
С	-3.31660100 -1.00188300 -0.22184400	
Н	-2.86382200 3.47400700 -0.80228200	
Н	-3.38332500 3.13100900 0.85615400	
Н	-3.50240000 1.23412000 -1.55605300	
Н	-4.84556100 1.63994500 -0.48048700	
0	-4.51074400 -1.41593900 -0.57710100	
0	-2.28874500 -1.65983000 -0.43368100	
Н	3.32595300 -0.26644400 -2.07176100	
Ν	3.96652600 -0.20706300 -1.28784600	
С	4.44835900 1.15334500 -1.01430400	
С	3.42803100 -0.77264300 -0.05825100	
Н	3.63726300 1.90321400 -0.98979200	
Н	5.17244800 1.45865900 -1.77489300	
С	5.06464400 0.99298100 0.37768700	
С	4.04485300 0.09000600 1.09862100	
Н	3.72048000 -1.82519100 0.05329600	
С	1.92037100 -0.76606100 0.04551600	
Н	5.21525900 1.94530500 0.89316600	
Н	6.03182100 0.48760600 0.29643400	
Н	3.26816400 0.69840500 1.57495200	
Н	4.48473700 -0.53928000 1.87412300	
0	1.17409400 -0.16323800 -0.80908400	
0	1.33506900 -1.38799700 1.01118600	
Н	-4.46287600 -2.28731800 -1.01485400	
Н	-1.94780800 0.82820000 1.90849700	
Mn	-0.46766800 -0.83747900 0.26055600	

1 6	
С	-4.60008500 1.03773200 -0.83407700
С	-3.90660400 -0.33890500 -0.84757700
Ν	-4.54541600 -1.10598100 0.31281600
С	-5.50254500 -0.16217300 1.04056900
С	-5.00414900 1.22521100 0.63755600
С	-2.40893700 -0.26423700 -0.55235900
0	-1.65719900 0.35572900 -1.35072700
0	-1.96473400 -0.82350000 0.50026800
0	1.53783400 0.91351100 0.86308000
С	2.37254000 0.01573300 0.47227100
0	1.91985800 -0.93617700 -0.26362900
С	3.82540700 0.09202300 0.88367100
Ν	4.63441700 -1.06260200 0.51244400
С	5.41597200 -0.72286700 -0.68556600
С	5.80572000 0.73040600 -0.40470100
С	4.51207300 1.32056800 0.18976700
Н	4.82705600 -0.78779100 -1.61739000
Н	6.27693900 -1.39108400 -0.77743300
Н	3.81042800 0.22813800 1.97333000
Н	6.13468200 1.26647200 -1.29897200
Н	6.61389000 0.75942100 0.33271400
Н	3.87107200 1.71433000 -0.60599800
Н	4.68469400 2.13267400 0.89819100
Н	4.08859100 -1.91173900 0.41173400
Н	-5.46954200 -0.38290400 2.10803000
Н	-6.50528200 -0.36098900 0.65656500
Н	-4.05471600 -0.89012700 -1.77855600
Н	-4.14324700 1.51706500 1.24867100
Н	-5.78158900 1.98027900 0.77034900
Н	-3.92718400 1.81025200 -1.20977600
Н	-5.48328400 1.01361600 -1.47951200
Н	-3.74590700 -1.37544600 0.91800300
Mn	0.05790900 -0.07427000 -0.14886000
Н	-5.00974300 -1.96277800 0.00547300

1 5			
Ν	-1.83036800	-0.54867700	-0.91554800
С	-2.11552000	-1.96909200	-0.44781000
С	-2.96021500	0.31700400	-0.45087400
Н	-1.45802600	-2.19095600	0.39594000
Н	-1.87322300	-2.66622300	-1.25151700
С	-3.58844000	-1.96058400	-0.03463300
С	-3.76805200	-0.55299500	0.54923100
Н	-3.60371000	0.61188500	-1.28682600
С	-2.41534700	1.57362200	0.18475800
Н	-3.81750900	-2.74551400	0.68994000
Н	-4.24196900	-2.09895500	-0.90341100
Н	-3.32245700	-0.49454100	1.54925700
Н	-4.80485700	-0.22039700	0.61790200
0	-3.33267600	2.46403500	0.48826900
0	-1.21089000	1.74434600	0.42525300
Н	2.03279700	0.81341100	-1.79644100
Ν	1.97469300	0.66138100	-0.79077200
С	2.58638000	1.86276400	-0.11382000
С	2.86965800	-0.53191200	-0.45669400
Н	2.16093700	1.94499000	0.89334500
Н	2.32968400	2.76763200	-0.66949900
С	4.07948800	1.54208100	-0.04003800
С	4.07646400	0.04995900	0.32201900
Н	3.19421700	-0.98645900	-1.39649800
С	2.13216200	-1.62244800	0.34351300
Н	4.60369600	2.15827300	0.69491200
Н	4.54819900	1.70994700	-1.01724000
Н	3.92387200	-0.08216000	1.39815300
Н	5.00042300	-0.46708600	0.05990100
0	0.87207100	-1.34451900	0.66227900
0	2.71651800	-2.64125400	0.64050900
Н	-2.93430500	3.24077800	0.92432600
н	-1.81001800	-0.53737500	-1.93290500
Fe	0.05085900	0.17009900	-0.07267300

15			
Ν	-4.01108300	-0.22818300	1.26648200
С	-5.02954000	0.82644700	0.84902500
С	-3.39953500	-0.82284200	-0.00349800
Н	-4.49984000	1.78127300	0.82087200
Н	-5.82399300	0.87355000	1.59467500
С	-5.45209200	0.36680400	-0.54488100
С	-4.13243100	-0.11687200	-1.16820300
Н	-3.57698300	-1.90057400	-0.00226800
С	-1.90115500	-0.54059500	0.04905700
Н	-5.91311800	1.17911200	-1.11104600
Н	-6.18019400	-0.44951100	-0.47700600
Н	-3.53933900	0.73172500	-1.52291200
Н	-4.27150500	-0.79788700	-2.00865400
0	-1.19411400	-0.92772100	-0.93550100
0	-1.43461800	0.09530100	1.02565700
Н	2.12802800	-1.26063500	1.40487100
Ν	2.28562300	-0.81570800	0.50078800
С	3.09193400	-1.76837400	-0.33438900
С	3.18869800	0.38639200	0.73441100
Н	3.00486200	-1.45519400	-1.38145500
Н	2.68687700	-2.77888500	-0.24048700
С	4.52548100	-1.59176700	0.16850600
С	4.63051000	-0.06957300	0.37911400
Н	3.10015200	0.67181500	1.78672900
С	2.73392100	1.61505700	-0.08468100
Н	5.26767500	-1.97403200	-0.53695200
Н	4.65407500	-2.13168900	1.11448000
Н	4.95543600	0.43462900	-0.53470200
Н	5.33996000	0.20127500	1.16270600
0	1.53055300	1.51801400	-0.64201000
0	3.45747900	2.58348900	-0.16262400
Н	-3.21115600	0.17018500	1.79534800
Н	-4.44605700	-0.95246100	1.84082200
Fe	0.53823800	-0.03446900	-0.40872500

-1.81080100	0.72951400	0.82885200
-1.56347200	2.04596000	0.11921400
-3.24006500	0.34854000	0.57516700
-1.10466800	1.83429600	-0.85090500
-0.85269600	2.63640300	0.69864400
-2.95143700	2.66424800	-0.04130600
-3.82416600	1.44321600	-0.36481400
-3.80218600	0.31546000	1.51399500
-3.28898800	-1.02940700	-0.04225500
-2.98287200	3.42019700	-0.82952000
-3.27643300	3.13467000	0.89364200
-3.69696500	1.15251500	-1.41366900
-4.88984300	1.59093500	-0.18449500
-4.49987100	-1.49429100	-0.23286300
-2.26994800	-1.66039800	-0.36333500
3.18319800	0.98020500	-1.82128900
3.86224600	0.54962700	-1.20327300
4.43235300	1.46374900	-0.20501000
3.35972000	-0.63262700	-0.52009000
3.66501100	2.04458000	0.33797900
5.11805400	2.16779800	-0.68448500
5.13209900	0.48869100	0.74521400
4.12372000	-0.67347200	0.85120400
3.56425300	-1.54272200	-1.10023600
1.86938100	-0.64626600	-0.28061700
5.36171700	0.92906000	1.71907100
6.06665700	0.14281900	0.29360800
3.42814900	-0.50617300	1.68015900
4.59223500	-1.64536500	1.01421700
1.10986300	0.34999600	-0.55231800
1.29522800	-1.69681200	0.20637000
-4.47610600	-2.37820700	-0.64718000
-1.69147600	0.87785700	1.82943000
-0.45935300	-0.80508000	0.10341900
	-1.81080100 -1.56347200 -3.24006500 -1.10466800 -0.85269600 -2.95143700 -3.82416600 -3.80218600 -3.80218600 -3.28898800 -2.98287200 -3.27643300 -3.69696500 -4.88984300 -4.49987100 -2.26994800 3.18319800 3.86224600 4.43235300 3.86501100 5.11805400 3.35972000 3.66501100 5.11805400 5.13209900 4.12372000 3.56425300 1.86938100 5.36171700 6.06665700 3.42814900 4.59223500 1.10986300 1.29522800 -4.47610600 -1.69147600	-1.810801000.72951400-1.563472002.04596000-3.240065000.34854000-1.104668001.83429600-0.852696002.63640300-2.951437002.66424800-3.824166001.44321600-3.802186000.31546000-3.28898800-1.02940700-2.982872003.42019700-3.276433003.13467000-3.696965001.15251500-4.889843001.59093500-4.49987100-1.660398003.862246000.549627003.862246000.549627003.865011002.044580005.118054002.167798005.132099000.488691004.12372000-0.673472003.56425300-1.542722001.86938100-0.646266005.361717000.929060006.066657000.142819003.42814900-0.506173001.109863000.349996001.29522800-1.69681200-4.47610600-2.37820700-0.45935300-0.80508000

1 5			
Ν	4.52672200	0.86928700	-0.56351400
С	5.46625500	1.02185400	0.62893000
С	3.81462000	-0.47916000	-0.43875800
Н	4.91906300	1.57999400	1.39166300
Н	6.34421400	1.59164800	0.32278600
С	5.72749300	-0.42201800	1.05421500
С	4.35677100	-1.09364600	0.87150100
Н	4.07173400	-1.08865000	-1.30794900
С	2.31777300	-0.19709800	-0.43215300
Н	6.09064200	-0.47592200	2.08287500
Н	6.48194500	-0.88413600	0.40761100
Н	3.69287300	-0.84612600	1.70602700
Н	4.40845300	-2.18054700	0.79716600
0	1.52754700	-1.19929900	-0.38176200
0	1.91508200	0.98767700	-0.45158200
Ν	-4.86426800	-0.21281100	-0.82688600
С	-5.44419400	-0.93157300	0.33634900
С	-3.93607300	0.80595100	-0.37741500
Н	-5.21910700	-2.00313600	0.30139000
Н	-6.53450500	-0.81951700	0.32363800
С	-4.83064900	-0.25656400	1.57969100
С	-4.41112200	1.12900400	1.06196300
Н	-3.96646000	1.70444000	-1.00901400
С	-2.47997700	0.37893100	-0.36216000
Н	-3.94818400	-0.81210100	1.91972500
Н	-5.52910000	-0.19981100	2.41848500
Н	-3.64031500	1.62114900	1.65908500
Н	-5.27355200	1.79860300	0.99266900
0	-2.11291300	-0.81749300	-0.66411300
0	-1.54507000	1.20873600	-0.06093300
Н	5.03683300	0.93399000	-1.44656800
Fe	-0.21659000	-0.24763000	-0.37636400
Н	3.77284200	1.58215100	-0.57776400
Н	-4.47576100	-0.83001900	-1.52942600

1 2			
Ν	1.61116000	0.95008700	-0.40237600
С	1.77883100	1.83986800	0.80638300
С	2.81225000	0.05234400	-0.45802900
Н	1.28768000	1.35434100	1.65472500
Н	1.27384400	2.78700200	0.61909200
С	3.29113500	1.91114200	1.01184500
С	3.73684300	0.46768700	0.72466500
Н	3.33262400	0.16974300	-1.41459500
С	2.32625900	-1.37169100	-0.37805500
Н	3.56242100	2.23806100	2.01836300
Н	3.74481000	2.60709000	0.29694100
Н	3.54896200	-0.16848000	1.59621900
Н	4.79023800	0.36754000	0.45964400
0	3.26549800	-2.28460500	-0.38249200
0	1.11616000	-1.65967800	-0.30666000
Н	-1.74192300	-1.78449900	-1.11111600
Ν	-1.74723600	-1.08306700	-0.37092900
С	-2.01765100	-1.77493900	0.95309300
С	-2.88920100	-0.10887200	-0.61484700
Н	-1.08119900	-1.90682000	1.50005700
Н	-2.44116300	-2.76409200	0.75267400
С	-3.03737700	-0.87482600	1.65264700
С	-3.91736900	-0.39546700	0.48859800
Н	-3.28979100	-0.26205000	-1.62065700
С	-2.35308500	1.33125500	-0.55406700
Н	-2.53666300	-0.02344200	2.12847800
Н	-3.59364900	-1.41219600	2.42386000
Н	-4.50312800	0.49815100	0.71140700
Н	-4.60357000	-1.18918800	0.17454000
0	-1.02024500	1.42708300	-0.53355200
0	-3.09483600	2.28582200	-0.53863600
Н	2.88475300	-3.18206200	-0.33208700
Н	1.59627000	1.54815400	-1.22911700
Со	-0.06645900	-0.09460600	-0.40437000

1 4			
Ν	4.08117500	-0.19049900	-1.03631100
С	4.92376600	0.89458900	-0.36188000
С	3.34434400	-0.97095700	0.05583300
Н	4.89826300	1.79218600	-0.98062300
Н	5.94723200	0.51818100	-0.30514300
С	4.28887100	1.03146000	1.02199400
С	3.90698600	-0.41478500	1.37711400
Н	3.51589300	-2.04132700	-0.07711500
С	1.85607500	-0.67415000	-0.12869500
Н	3.40189700	1.67263800	0.97768800
Н	4.98674600	1.47313900	1.73615600
Н	3.16329300	-0.49158600	2.17183300
Н	4.78913000	-0.98912600	1.67625600
0	1.02559200	-1.10271400	0.71154700
0	1.49833700	0.03851300	-1.12411600
Н	-2.30646600	-1.15394400	-1.74380000
Ν	-2.27669700	-0.80052400	-0.78965100
С	-2.74223500	-1.90562400	0.14783800
С	-3.27183200	0.35126400	-0.66937400
Н	-1.89103200	-2.29782300	0.70937800
Н	-3.16549700	-2.71790400	-0.45066200
С	-3.81339300	-1.25028700	1.02535500
С	-4.47529500	-0.24552400	0.07197900
Н	-3.52292400	0.70609100	-1.67303800
С	-2.66651100	1.56381100	0.08783000
Н	-3.35202800	-0.72389800	1.86899000
Н	-4.50947000	-1.98768500	1.43181400
Н	-5.04428700	0.53633400	0.57709400
Н	-5.13911900	-0.76124500	-0.63105600
0	-1.35596700	1.53912600	0.28298200
0	-3.39805200	2.46630100	0.43770600
Н	3.32527900	0.22337000	-1.61521500
Н	4.64479000	-0.79572400	-1.63600600
Со	-0.46803600	0.00618200	-0.27732300

1 4	
Ν	-2.14988100 -0.72767700 -0.75236000
С	-2.38834800 -2.01816300 0.00976300
С	-3.32470300 0.17430700 -0.47953700
Н	-1.83896600 -1.96453300 0.95432000
Н	-1.98870300 -2.85320900 -0.56780500
С	-3.89749500 -2.05436300 0.24703900
С	-4.22410200 -0.58266200 0.53785600
Н	-3.87767700 0.36672000 -1.40452300
С	-2.83591100 1.50321700 0.05057300
Н	-4.17232000 -2.71433100 1.07316000
Н	-4.42326700 -2.39756800 -0.65116900
Н	-3.93811900 -0.32493100 1.56376500
Н	-5.27496800 -0.32134100 0.40608100
0	-3.78853000 2.38206300 0.25076300
0	-1.64335600 1.74042300 0.29499800
Н	3.61408700 -0.46369000 -1.89575700
Ν	4.12889400 -0.52776000 -1.02421900
С	4.92314200 0.67015600 -0.71340200
С	3.29025300 -0.84481000 0.12302200
Н	4.35224000 1.60764200 -0.82994100
Н	5.80067000 0.71972100 -1.36390700
С	5.27345700 0.43990200 0.75869000
С	3.95750100 -0.11178200 1.34126600
Н	3.25560200 -1.92823600 0.30161100
С	1.84945600 -0.41535400 -0.00124000
Н	5.60249400 1.34933700 1.26809200
Н	6.06899900 -0.30740000 0.83648300
Н	3.31955200 0.70802500 1.68795800
Н	4.09959200 -0.79119900 2.18337300
0	1.42371700 0.29781600 -0.98464400
0	0.97491200 -0.76184400 0.87943000
Н	-3.42610900 3.21763400 0.60312900
Н	-2.13960100 -0.94375100 -1.74849800
Со	-0.38370600 0.22217900 -0.17588400

1 4			
С	4.44429200	-0.11039600	1.14154300
С	3.80419600	-0.39890300	-0.23464300
Ν	4.13400700	0.83179400	-1.08457400
С	4.98277300	1.77934900	-0.23866100
С	5.59347700	0.85656200	0.81457800
С	2.29197800	-0.54831500	-0.20456200
0	1.57431400	0.33998900	-0.75800400
0	1.77695800	-1.53527100	0.39185600
0	-1.67273400	-0.07874600	0.89493700
С	-2.42349000	-0.60766100	-0.00339400
0	-1.81528600	-1.27924100	-0.91854400
С	-3.92283100	-0.46682400	-0.00447500
Ν	-4.48555400	0.11950000	1.20642800
С	-4.83782700	1.52116100	0.93923900
С	-5.36345000	1.44519800	-0.49633000
С	-4.36610900	0.48473300	-1.17161100
Н	-3.97098900	2.20284300	0.99372800
Н	-5.58905300	1.86459900	1.65614200
Н	-4.31218700	-1.48017300	-0.17064600
Н	-5.40198500	2.41936200	-0.99109600
Н	-6.37004000	1.01560900	-0.49892100
Н	-3.50458200	1.04124300	-1.55599500
Н	-4.78945000	-0.07864700	-2.00492700
Н	-3.89980200	-0.00763900	2.02462100
Н	4.29804300	2.50676500	0.20255200
Н	5.69331200	2.29551000	-0.88509300
Н	4.24987200	-1.27560600	-0.71003400
Н	5.93385200	1.41791200	1.68744600
Н	6.45582700	0.31939200	0.40398200
Н	3.71487300	0.36681200	1.80394300
Н	4.77132200	-1.03617100	1.61649100
Н	3.22486700	1.24450400	-1.35966600
Со	-0.10337200	-0.86448600	-0.04657000
Н	4.62393200	0.56247600	-1.94018100

1 1			
Ν	1.64354800	1.06511300	-0.58991600
С	1.67767400	2.16329600	0.44450400
С	2.86700000	0.21886400	-0.37461600
Н	0.66608600	2.54437400	0.57924800
Н	2.32873100	2.97107400	0.09152000
С	2.28134800	1.45502600	1.65094200
С	3.42078600	0.62708000	1.03104000
Н	3.61577600	0.38213300	-1.15542500
С	2.44824500	-1.22841200	-0.41763400
Н	1.53012100	0.80553100	2.11600400
Н	2.64064000	2.15313800	2.40965100
Н	3.71244300	-0.24013100	1.62719900
Н	4.31269200	1.24189200	0.88796900
0	1.25397600	-1.57331400	-0.43256800
0	3.43336200	-2.09559100	-0.41197500
Н	-1.56933300	-1.81055600	-1.16086200
Ν	-1.60876400	-1.12634500	-0.40519200
С	-1.78259200	-1.85703200	0.91534000
С	-2.82401100	-0.22899000	-0.59253600
Н	-0.81817000	-1.94283400	1.41952700
Н	-2.15515600	-2.86475900	0.70651000
С	-2.82598500	-1.03159000	1.66878700
С	-3.78258400	-0.59262000	0.54955100
Н	-3.25230100	-0.40002200	-1.58370900
С	-2.37041200	1.23770500	-0.53179800
Н	-2.35933500	-0.15757900	2.13791600
Н	-3.31523500	-1.61398500	2.45257400
Н	-4.40916900	0.26255700	0.80999600
Н	-4.43479900	-1.42127500	0.25411800
0	-1.04865100	1.40429100	-0.55092200
0	-3.15880000	2.15372200	-0.47792400
Н	3.09591900	-3.01100800	-0.42208200
Н	1.64287000	1.47251500	-1.52627700
Ni	0.00102900	-0.05840200	-0.49116100

1 3			
Ν	3.88071200	-0.29491900	-1.18917400
С	4.96588700	0.63073900	-0.63514300
С	3.17713800	-0.96794900	-0.00710000
Н	5.00667000	1.53002000	-1.25065400
Н	5.91434400	0.09453000	-0.70797000
С	4.54320400	0.84576900	0.81817000
С	3.98409300	-0.52644000	1.22791200
Н	3.16375300	-2.04987000	-0.15594500
С	1.74053900	-0.44436700	-0.00419400
Н	3.77136400	1.62019000	0.88379400
Н	5.38776000	1.16110900	1.43416500
Н	3.34459500	-0.49614500	2.11157500
Н	4.79460300	-1.23707700	1.41623500
0	0.96395100	-0.74997900	0.93371200
0	1.36691800	0.31952500	-0.95230100
Н	-1.59501300	-0.93504000	-1.73091700
Ν	-1.87127900	-0.71073300	-0.77692300
С	-2.11987300	-1.99117200	-0.00677100
С	-3.17023300	0.07879600	-0.79890900
Н	-1.26280000	-2.20599600	0.63527200
Н	-2.24213500	-2.81537800	-0.71737700
С	-3.42215600	-1.72929200	0.75466800
С	-4.23038500	-0.87948700	-0.23664000
Н	-3.38465100	0.39291100	-1.82423700
С	-3.05109300	1.37041800	0.04458100
Н	-3.22235700	-1.16027600	1.67012900
Н	-3.92154600	-2.65829600	1.03878400
Н	-5.05144000	-0.32352300	0.21879700
Н	-4.63864500	-1.50788600	-1.03589600
0	-1.82225500	1.68454700	0.44756500
0	-4.03753300	2.03105800	0.28471400
Н	3.13149400	0.24249300	-1.66644100
Н	4.25837900	-0.97105400	-1.85536700
Ni	-0.49256300	0.49127000	0.09463400

1	1			
Ν		1.98502700	0.77085300	-0.59099000
С		2.39632400	1.93662400	0.28431700
С		3.13717300	-0.20342500	-0.60989400
Н		2.00875200	1.75728700	1.29057100
Н		1.93964500	2.84849400	-0.10106500
С		3.92447700	1.90149800	0.26608800
С		4.22650700	0.39546200	0.32004300
Н		3.51927300	-0.31696000	-1.62946600
С		2.60493900	-1.53462400	-0.15124500
Н		4.36145700	2.44503100	1.10693700
Н		4.31175400	2.34227700	-0.65962300
Н		4.10330500	0.01945600	1.34130700
Н		5.22814900	0.12751400	-0.01886200
0		3.47367800	-2.51505200	-0.12118200
0		1.41869700	-1.67596200	0.18703300
Н		-3.90889900	1.45082000	-1.60421000
Ν		-3.73237800	0.61000100	-1.06793300
С		-4.89197800	-0.30488600	-0.98116600
С		-3.23008700	0.89561800	0.29323400
Н		-4.92180500	-0.95876900	-1.85729900
Н		-5.84345000	0.24575700	-0.92795700
С		-4.64617400	-1.06635800	0.32483100
С		-4.07622200	0.02549600	1.24811300
Н		-3.26337700	1.96231100	0.54499400
С		-1.77975400	0.49239500	0.25037400
Н		-3.90296800	-1.85510100	0.17025600
Н		-5.55614800	-1.52222600	0.72236900
Н		-3.49673100	-0.37239400	2.08458000
Н		-4.88317000	0.64156800	1.65678800
0		-0.84608900	1.30276600	-0.12912900
0		-1.34676300	-0.68442100	0.51363200
Н		3.05716300	-3.34217600	0.18891100
Н		1.83105600	1.11971000	-1.53801700
Ni		0.35928800	-0.10371500	-0.00817000

1 3			
С	-4.62274000	-0.46351500	0.48695000
С	-3.38813100	0.33142100	0.95698300
Ν	-3.53234500	1.70255100	0.29097900
С	-4.76352600	1.66748000	-0.61349200
С	-4.97149400	0.17498300	-0.86783100
С	-2.06920800	-0.25286200	0.46271300
0	-1.69845400	-1.39046600	0.85890300
0	-1.36132300	0.42292100	-0.34808100
0	1.66219600	-0.48613700	0.76954700
С	2.30884300	-0.70172600	-0.31259100
0	1.63115700	-1.21841100	-1.27900300
С	3.76016300	-0.31597200	-0.50208600
Ν	3.71573300	1.05789200	-1.04844300
С	4.54693300	1.94553100	-0.21038900
С	4.48753200	1.28028900	1.16792100
С	4.55555500	-0.21642300	0.81708700
Н	4.13837400	2.96057800	-0.21418600
Н	5.58862500	1.99245700	-0.56498300
Н	4.19454100	-1.03666700	-1.20440400
Н	3.53520400	1.50870800	1.65743600
Н	5.30057500	1.59907000	1.82501000
Н	4.15398600	-0.86335300	1.60032900
Н	5.59110400	-0.51611300	0.62673000
Н	3.93484100	1.09323800	-2.03661300
Н	-4.56556200	2.27271100	-1.49883500
Н	-5.59095500	2.10332700	-0.04957800
Н	-3.33542600	0.45215100	2.04093000
Н	-4.29685900	-0.17793000	-1.65520900
Н	-5.99545000	-0.03511400	-1.18341200
Н	-4.39396600	-1.52892700	0.42689400
Н	-5.44093300	-0.33220000	1.20139800
Н	-2.66141000	1.81956000	-0.26186700
Ni	0.04293600	-1.15772900	-0.16792300
Н	-3.57476300	2.46333700	0.97194900

12			
Ν	1.874572	-0.730016	1.188541
С	2.145719	-1.832157	0.198940
С	2.901497	0.332304	0.969301
Н	1.234824	-2.415518	0.065662
Н	2.943995	-2.480331	0.578426
С	2.605468	-1.050946	-1.026356
С	3.538704	0.016163	-0.426854
Н	3.663763	0.336314	1.754165
С	2.219842	1.681503	0.975312
Н	1.741533	-0.587568	-1.519599
Н	3.110645	-1.680866	-1.761160
Н	3.643089	0.908944	-1.047036
Н	4.540069	-0.390761	-0.267720
0	0.989826	1.819588	0.926841
0	3.048914	2.701728	1.005618
Н	-2.033612	1.484735	1.468842
Ν	-1.857809	0.819946	0.717056
С	-2.039380	1.515411	-0.618069
С	-2.859191	-0.316386	0.788790
н	-1.065311	1.779895	-1.036430
Н	-2.604479	2.439116	-0.459553
С	-2.840986	0.518583	-1.458399
С	-3.780266	-0.119118	-0.423769
н	-3.393850	-0.268753	1.741484
С	-2.133632	-1.679201	0.749271
Н	-2.180038	-0.241344	-1.891979
Н	-3.368365	1.011337	-2.278140
н	-4.210195	-1.070914	-0.740392
н	-4.598907	0.564978	-0.175614
0	-0.818331	-1.636516	0.893242
0	-2.761391	-2.707214	0.606880
н	2.563194	3.547383	0.981645
н	1.919117	-1.093116	2.140828
Cu	-0.022833	0.046876	0.941830

1 2			
Ν	4.02794400	0.96135600	-0.34179200
С	4.85796200	0.67607300	0.90724500
С	3.33052000	-0.33522400	-0.76283900
Н	4.83038500	1.55292100	1.55512200
Н	5.88400800	0.49428300	0.58042900
С	4.21079100	-0.58506500	1.47907400
С	3.85741100	-1.39763700	0.22216900
Н	3.56314000	-0.55663900	-1.80636400
С	1.83086800	-0.07426200	-0.62762700
Н	3.31092700	-0.32905800	2.04857600
Н	4.89341600	-1.11393600	2.14726800
Н	3.10537500	-2.16956900	0.39380900
Н	4.74845900	-1.87837900	-0.19285400
0	1.00466900	-0.98658100	-0.90152300
0	1.45042000	1.06590500	-0.22481400
Н	-2.21633100	-0.94284800	-1.81972800
Ν	-2.19202200	-0.75757300	-0.81791400
С	-2.24581400	-2.05629500	-0.04930900
С	-3.38324100	0.08749200	-0.40312600
Н	-1.23220700	-2.39521100	0.17702000
Н	-2.73461500	-2.81606000	-0.66864600
С	-3.10154400	-1.71584800	1.17080600
С	-4.17868600	-0.79560900	0.57563600
Н	-3.96402700	0.35939200	-1.28831500
С	-2.91605000	1.40718600	0.25092500
Н	-2.50644800	-1.17780800	1.91878800
Н	-3.51076600	-2.61030100	1.64569800
Н	-4.69810700	-0.18073400	1.31260700
Н	-4.92510300	-1.38684800	0.03480200
0	-1.61617700	1.64047800	0.22492500
0	-3.73013100	2.16188900	0.74223200
Н	3.24529400	1.61447400	-0.13394400
Н	4.58767300	1.36762800	-1.09387400
Cu	-0.54055400	0.29047700	-0.41368100

1 2	
Ν	-2.09973000 -0.78771000 -0.64913400
С	-2.13767600 -2.03926400 0.19972100
С	-3.32429000 0.01635600 -0.31960100
Н	-1.55177100 -1.85774900 1.10588000
Н	-1.66950000 -2.85740700 -0.34858600
С	-3.61780500 -2.22708900 0.53180300
С	-4.09237800 -0.78538100 0.76956000
Н	-3.94514800 0.14229900 -1.21237300
С	-2.89914700 1.39112700 0.14539700
Н	-3.77158800 -2.86715100 1.40378900
Н	-4.14835700 -2.67587700 -0.31568900
Н	-3.79768200 -0.44747600 1.76916100
Н	-5.17040700 -0.64817000 0.67526700
0	-3.90028200 2.19220600 0.43434600
0	-1.71435200 1.72656500 0.25693100
Н	3.65039300 1.83694000 -0.52426700
Ν	4.14200900 0.96196900 -0.37666900
С	4.74872100 0.80006700 0.94957700
С	3.36861500 -0.22912900 -0.70353800
Н	4.04806200 1.02649200 1.77162900
Н	5.61539600 1.45965400 1.04918900
С	5.11323900 -0.68706600 0.94829500
С	3.89098500 -1.33921400 0.27180600
Н	3.52387800 -0.52631900 -1.74969300
С	1.88257200 -0.03422600 -0.54525000
Н	5.29342200 -1.08394200 1.95055500
Н	6.01350400 -0.84577800 0.34693700
Н	3.12463900 -1.57827200 1.01634800
Н	4.12600600 -2.26143100 -0.26220000
0	1.38005200 1.07864000 -0.15235900
0	1.03837700 -0.96301900 -0.80917100
Н	-3.57295800 3.06202300 0.73308100
Н	-2.13999800 -1.06472300 -1.62948500
Cu	-0.41211100 0.29292600 -0.34219100

1 2			
С	-4.57823900	-1.03935500	-0.15429900
С	-3.76655500	-0.07561400	0.73031000
Ν	-4.43427500	1.28275000	0.53543600
С	-5.54604900	1.13356100	-0.48993100
С	-5.14978400	-0.12971900	-1.25564200
С	-2.30745600	0.12797300	0.26226200
0	-1.98096400	1.24934100	-0.15379800
0	-1.58541700	-0.92334400	0.35755500
0	2.09378700	-1.03868500	-0.47466100
С	2.51792800	-0.36610600	0.54393200
0	1.69015500	0.11017600	1.34850900
С	4.03458800	-0.19755300	0.71978200
Ν	4.71674200	-0.66811100	-0.46065900
С	5.07178000	0.41717400	-1.37753500
С	4.53553900	1.68693200	-0.68303200
С	4.44811700	1.28507500	0.80169100
Н	4.64211800	0.25106900	-2.37149100
Н	6.16481800	0.44930700	-1.48954800
Н	4.31353900	-0.77002700	1.61269300
Н	3.53829600	1.92812800	-1.06779600
Н	5.17658200	2.55490600	-0.84974700
Н	3.73305700	1.87576700	1.37725300
Н	5.42652200	1.35362800	1.28631200
Н	-5.60191700	2.04426800	-1.08771600
Н	-6.48200700	0.99842400	0.05690900
Н	-3.77173900	-0.34515700	1.78787000
Н	-4.38625300	0.10354900	-2.00524000
Н	-6.00639000	-0.56977600	-1.77024000
Н	-3.94220200	-1.84088500	-0.53308100
Н	-5.38581200	-1.49320500	0.42871000
Н	-3.63460300	1.85618800	0.16687000
Cu	0.24886000	-0.86377900	0.00517800
Н	-4.75867000	1.69778200	1.40970600
Н	4.48073700	-1.58096400	-0.83115700

-1.87602700	-0.31082000	-1.08631700
-2.19903200	-1.79246600	-0.88574500
-2.84668600	0.48057000	-0.25933000
-1.41066100	-2.22706000	-0.26738600
-2.20385800	-2.28980600	-1.85720300
-3.54589400	-1.80781000	-0.15998900
-3.47601300	-0.54854200	0.71333900
-3.62635400	0.92136800	-0.88913400
-2.13784000	1.60178000	0.46845100
-3.67803500	-2.71726800	0.43046500
-4.37920800	-1.73639900	-0.86801100
-2.81073500	-0.71339400	1.56878100
-4.44174000	-0.20328500	1.08519200
-2.95975400	2.43995500	1.06135200
-0.90817800	1.70874000	0.52828700
2.13584800	0.30824400	-1.96471100
1.96129500	0.41257400	-0.96662500
2.54466100	1.73905400	-0.53289400
2.74700200	-0.68512000	-0.23711900
1.98162600	2.09097700	0.33718400
2.42812000	2.46869100	-1.33749100
3.98666200	1.40926700	-0.15008100
3.83330700	0.06303500	0.57079300
3.20072100	-1.32711600	-0.99660000
1.87921300	-1.60032700	0.66575500
4.43573600	2.18276900	0.47827900
4.60381300	1.30543200	-1.05067100
3.49221400	0.21623600	1.60026200
4.75386800	-0.51974000	0.61841600
0.59080000	-1.32969000	0.73381500
2.44518300	-2.49940100	1.25498900
-2.46502100	3.12132600	1.55443700
-2.00861500	-0.06885700	-2.06621900
0.04462400	0.09207100	-0.39305400
	-1.87602700 -2.19903200 -2.84668600 -1.41066100 -2.20385800 -3.54589400 -3.54589400 -3.62635400 -3.67803500 -4.37920800 -2.81073500 -4.37920800 -2.95975400 -2.95975400 -2.95975400 -2.95975400 2.13584800 1.96129500 2.54466100 2.74700200 1.98162600 2.42812000 3.98666200 3.83330700 3.20072100 1.87921300 4.43573600 4.60381300 3.49221400 4.75386800 0.59080000 2.44518300 -2.46502100 -2.00861500 0.04462400	-1.87602700-0.31082000-2.19903200-1.79246600-2.846686000.48057000-1.41066100-2.22706000-2.20385800-2.28980600-3.54589400-1.80781000-3.47601300-0.54854200-3.626354000.92136800-2.137840001.60178000-3.67803500-2.71726800-4.37920800-1.73639900-2.81073500-0.71339400-2.959754002.43995500-0.908178001.708740002.544661001.739054002.544661001.739054002.74700200-0.685120001.981626002.090977002.428120002.468691003.986662001.409267003.83307000.063035003.20072100-1.327116001.87921300-1.600327004.435736002.182769004.603813001.305432003.492214000.216236004.75386800-0.519740000.59080000-1.329690002.44518300-2.49940100-2.00861500-0.068857000.044624000.09207100

1 1			
Ν	4.28596900	-0.39450100	-1.02456100
С	5.17044100	0.72702900	-0.48308500
С	3.43431900	-0.93293800	0.12460600
Н	5.26052700	1.50201800	-1.24505300
Н	6.15330700	0.29567600	-0.28175800
С	4.45984600	1.14886100	0.80264700
С	3.94494100	-0.18414000	1.37007300
Н	3.54403300	-2.01724500	0.19099100
С	1.98177100	-0.58664800	-0.24197900
Н	3.62979500	1.82737100	0.57858900
Н	5.14118800	1.66444800	1.48240700
Н	3.14661400	-0.07025800	2.10481800
Н	4.75877100	-0.74847600	1.83601400
0	1.10487400	-0.89167200	0.64322300
0	1.74906500	-0.02769600	-1.32664600
Н	-2.14774900	-1.27842200	-1.60584300
Ν	-2.29110800	-0.87869200	-0.68074300
С	-3.00257200	-1.90118200	0.19369800
С	-3.19824300	0.34180200	-0.79982900
Н	-2.29706200	-2.34902800	0.89803200
Н	-3.39956500	-2.69507000	-0.44580400
С	-4.13343600	-1.11332700	0.86067100
С	-4.54866400	-0.11938800	-0.23250000
Н	-3.25818700	0.63230800	-1.85221700
С	-2.64700600	1.58824800	-0.03897400
Н	-3.76265100	-0.57611900	1.74154900
Н	-4.94526600	-1.76823800	1.18519300
Н	-5.12317500	0.73093800	0.13653900
Н	-5.13565500	-0.62548500	-1.00709500
0	-1.41147600	1.52136300	0.42346800
0	-3.37518100	2.55434700	0.06332900
Н	3.57785400	-0.03107800	-1.69788500
Н	4.82841300	-1.12364300	-1.49040000
Zn	-0.57472900	-0.11726600	0.12166900

1 1			
Ν	-2.19895500	-0.74373900	-0.76113000
С	-2.41149900	-2.02043800	0.03796000
С	-3.33482300	0.18583000	-0.43580500
Н	-1.79633700	-1.96642200	0.94077800
Н	-2.07300800	-2.87150500	-0.55499100
С	-3.90113300	-2.01507200	0.37724100
С	-4.17443800	-0.53095100	0.65875300
Н	-3.94466600	0.36326500	-1.32719300
С	-2.79761700	1.52397300	0.02857200
Н	-4.13266300	-2.65257900	1.23369000
Н	-4.49446200	-2.36329300	-0.47575400
Н	-3.81088800	-0.25912500	1.65606600
Н	-5.22616900	-0.24853200	0.59542300
0	-3.73430800	2.41308000	0.25873100
0	-1.59367700	1.75594000	0.19656700
Н	3.65070200	-0.62928500	-1.79749500
Ν	4.15732600	-0.63661800	-0.91933700
С	5.01090600	0.54563500	-0.72256700
С	3.29179800	-0.80143300	0.24344100
Н	4.50486600	1.49124600	-0.98343700
Н	5.91601600	0.46276000	-1.33082100
С	5.28813700	0.49168200	0.78146500
С	3.91466000	0.10663000	1.35988100
Н	3.27432900	-1.84826700	0.57503800
С	1.84477900	-0.42534600	0.03201600
Н	5.65834400	1.43852600	1.18337800
Н	6.02648700	-0.28762400	0.99544400
Н	3.30299100	1.00426100	1.50270800
Н	3.96352500	-0.41399000	2.31791300
0	1.44726200	0.18450400	-1.02897500
0	0.96107900	-0.71233500	0.91841400
Н	-3.35041300	3.25534300	0.56988500
Н	-2.24223900	-0.97221500	-1.75336200
Zn	-0.39875000	0.15557800	-0.28358800

1 1	
С	4.43316000 -0.40556300 1.09734100
С	3.83519600 -0.32871300 -0.32447700
Ν	4.41432300 0.95424100 -0.92238400
С	5.35103200 1.57931900 0.10692000
С	5.74118800 0.39476000 0.98982400
С	2.31379200 -0.19327200 -0.37070700
0	1.80568900 0.86584800 -0.76619000
0	1.66207500 -1.22384200 0.04130300
0	-1.83364900 -0.32858700 0.94144200
С	-2.51574700 -0.60288000 -0.10971700
0	-1.87034100 -1.01806000 -1.14269100
С	-4.02308100 -0.46401100 -0.15806600
Ν	-4.65848600 -0.15958500 1.11464700
С	-4.87380000 1.29155600 1.18900100
С	-5.33453200 1.60882900 -0.23629500
С	-4.41166100 0.72783400 -1.10464800
Н	-3.95322600 1.85200800 1.43018400
Н	-5.62577800 1.52407300 1.94819900
Н	-4.38750200 -1.41613000 -0.56398100
Н	-5.25133000 2.66979700 -0.48677800
Н	-6.37837900 1.30563600 -0.36039200
Н	-3.51780600 1.28244000 -1.40732300
Н	-4.88996700 0.36543800 -2.01625200
Н	-4.16263500 -0.54172700 1.91284500
Н	4.76759200 2.32235200 0.65486600
Н	6.17336400 2.07442300 -0.41059300
Н	4.15198300 -1.17197200 -0.94209900
Н	6.11566500 0.72608600 1.96088200
Н	6.52788600 -0.19957100 0.51161000
Н	3.75420100 0.06232900 1.81767500
Н	4.57883700 -1.44308200 1.40069800
н	3.59224900 1.55044900 -1.13831500
Zn	-0.19638800 -0.84326700 -0.09745000
Н	4.90214200 0.76286900 -1.79954500

1	1			
Ν		1.90240500 0.	48798000	-1.06522300
С		2.11649000 1.9	93346500	-0.62250300
С		2.94079500 -0.	35001100	-0.37836400
Н		1.34130100 2.	18777100	0.10517500
Н		2.00491600 2.	59089200	-1.48662300
С		3.50889300 1.9	95038000	0.00963600
С		3.58818300 0.5	57651600	0.68763700
Н		3.70491900 -0.	68929300	-1.08541500
С		2.30259600 -1.	57154000	0.24280600
Н		3.62753200 2.	77185000	0.71997800
Н		4.28843500 2.	04476800	-0.75488900
Н		2.99213900 0.	57111700	1.60782800
Н		4.60000700 0.	25064400	0.93317600
0		3.16493500 -2.	44277300	0.71059800
0		1.07541600 -1.	72789900	0.33089200
Н		-2.15964500 -0.	68905400	-2.06101000
Ν		-1.99730200 -0.	59578600	-1.06060900
С		-2.58842600 -1.	83114500	-0.38507300
С		-2.81017800 0.	60652800	-0.57900500
Н		-1.80072700 -2.	39936100	0.11966300
Н		-3.02268200 -2.	47539800	-1.15420400
С		-3.65917100 -1.	30117200	0.58193400
С		-4.12568500 0.	00335700	-0.07785900
Н		-2.94973600 1.	28688000	-1.42504600
С		-2.07733300 1.4	43241100	0.52844400
Н		-3.22036300 -1.	08751400	1.56292000
Н		-4.46346200 -2.	02595700	0.72798800
Н		-4.62811600 0.	68540800	0.60915200
Н		-4.79593000 -0.	20521100	-0.91976700
0		-0.78824600 1.	20776700	0.65558900
0		-2.72902600 2.	24167900	1.15979600
Н		2.70912600 -3.	19357700	1.13638300
Н		2.06599100 0.4	43160500	-2.06848900
Μ	g	-0.04925400 -0	0.18532100	0 -0.38224300
1	1			
----	---	---------------------------------------		
Ν		4.02700600 -0.31938900 -1.08509700		
С		4.86882100 0.83826400 -0.53861300		
С		3.33147500 -1.00219800 0.09447400		
Н		4.80410000 1.67563500 -1.23412600		
Н		5.90118900 0.48664700 -0.48437000		
С		4.27682700 1.08797000 0.84862900		
С		3.92962300 -0.32599200 1.34181200		
Н		3.50709200 -2.07944300 0.05349200		
С		1.83440700 -0.73442800 -0.06619300		
Н		3.37971900 1.71267900 0.77922800		
Н		4.99079200 1.59922800 1.49747000		
Н		3.21504100 -0.34300300 2.16616000		
Н		4.83025600 -0.86125400 1.65762100		
0		1.03945900 -1.07930500 0.84414600		
0		1.43537200 -0.12635300 -1.11577100		
Н		-2.49199600 -1.23264400 -1.58856200		
Ν		-2.35963100 -0.81238400 -0.66901200		
С		-2.91187800 -1.78698200 0.33662300		
С		-3.26983300 0.41749400 -0.59757100		
Н		-2.51051600 -1.52728500 1.32393400		
Н		-2.58577200 -2.80039000 0.08940900		
С		-4.42262500 -1.55826500 0.29416500		
С		-4.52926400 -0.02708200 0.19515000		
Н		-3.52186200 0.69744500 -1.62451900		
С		-2.58668600 1.66396400 0.03713300		
Н		-4.93321800 -1.96447700 1.17126300		
Н		-4.84463100 -2.04417800 -0.59424200		
Н		-4.51342900 0.43185000 1.18751600		
Н		-5.44548400 0.30642400 -0.29440400		
0		-1.29638900 1.57605600 0.26204600		
0		-3.29352000 2.62873300 0.26261100		
Н		3.25270300 0.02710000 -1.68233300		
Н		4.58718700 -0.97062000 -1.63811300		
Mŧ	g	-0.45811500 -0.05173500 -0.18371500		

1 1	
Ν	-2.15590200 -0.68632500 -0.80756900
С	-2.25873400 -1.98767600 -0.03249200
С	-3.39861200 0.10369900 -0.51543500
Н	-1.70023600 -1.88237800 0.90353400
Н	-1.79339000 -2.78749700 -0.61084400
С	-3.75371500 -2.16600900 0.23018400
С	-4.21754500 -0.73057800 0.51386800
Н	-3.98261900 0.25523300 -1.42887700
С	-3.02483400 1.46794400 0.02282500
н	-3.95307000 -2.84140400 1.06549100
Н	-4.25619300 -2.56621000 -0.65771700
Н	-3.95330800 -0.44023500 1.53710800
Н	-5.28924600 -0.57138000 0.38696600
0	-4.04797400 2.26056400 0.22486300
0	-1.85615800 1.80278800 0.27314700
Н	3.49357600 -0.29753900 -1.88660100
Ν	4.03474100 -0.49971000 -1.05333600
С	5.02793700 0.54137100 -0.73945700
С	3.19701100 -0.73416600 0.11961600
н	4.63536100 1.56413600 -0.87333400
Н	5.90898500 0.42789100 -1.37755900
С	5.31846200 0.27950500 0.74015700
С	3.91740900 -0.00951700 1.30578200
Н	3.11687100 -1.80875500 0.33597800
С	1.77276100 -0.24765900 0.00103700
Н	5.80405400 1.12345600 1.23727000
Н	5.96259000 -0.59987000 0.84390800
Н	3.40764800 0.93183800 1.54090200
Н	3.91622200 -0.61947500 2.21093000
0	1.37996600 0.46532900 -0.99707300
0	0.90864400 -0.55320700 0.90554400
Н	-3.76207600 3.12113100 0.58742000
Н	-2.14931100 -0.91127100 -1.80143700
Mg	-0.42619900 0.44160800 -0.17626300

1 1			
С	-4.47826400	1.06225100	-0.84335100
С	-3.80060200	-0.32248200	-0.87747300
Ν	-4.45150800	-1.10173700	0.26734200
С	-5.40125100	-0.15838000	1.00808900
С	-4.88606800	1.22956700	0.62963900
С	-2.30358600	-0.26605900	-0.58223000
0	-1.53871600	0.35845100	-1.36043000
0	-1.86325900	-0.85045300	0.46521700
0	1.43157300	0.85999100	0.87678900
С	2.27223800	-0.02133400	0.46201400
0	1.83491600	-0.97827100	-0.27865000
С	3.72939400	0.07794000	0.85731000
Ν	4.55766400	-1.05888100	0.46820200
С	5.35672700	-0.68040200	-0.70682000
С	5.70785100	0.77649400	-0.39559100
С	4.38600100	1.32613200	0.17263800
Н	4.78918500	-0.74182600	-1.65216700
Н	6.23441900	-1.32756100	-0.79232100
Н	3.72411000	0.20330700	1.94836900
Н	6.04775200	1.33282200	-1.27333800
Н	6.49589100	0.81254800	0.36328900
Н	3.74807000	1.69318200	-0.63861100
Н	4.51677300	2.14755200	0.87939600
Н	4.01706100	-1.90582800	0.32895900
Н	-5.37417000	-0.39760800	2.07170300
Н	-6.40453200	-0.34043400	0.61729700
Н	-3.95102800	-0.85558100	-1.81867900
Н	-4.02515600	1.50300200	1.24926900
Н	-5.65600400	1.99070100	0.77124500
Н	-3.79551400	1.83328200	-1.20413000
Н	-5.35873600	1.05818600	-1.49281400
Н	-3.66183000	-1.39420500	0.87279600
Mg	0.03551000	-0.15006300	-0.10754200
Н	-4.92626200	-1.94656100	-0.05733400

1	1			
С		-4.93059900	1.00355700	-0.76598500
С		-4.23456700	-0.37054600	-0.77519000
Ν		-4.77012700	-1.08368000	0.46742500
С		-5.66872200	-0.11273700	1.22884400
С		-5.21587600	1.25706900	0.72354800
С		-2.70889000	-0.28529200	-0.61118800
0		-2.04694300	0.29921300	-1.50160400
0		-2.19899300	-0.81419000	0.43372400
0		1.78063900	0.98374200	0.68607400
С		2.58997000	0.04323700	0.36038100
0		2.18263600	-0.96833000	-0.31692700
С		4.03792400	0.14771900	0.79952200
Ν		4.84402100	-1.05362000	0.56433600
С		5.90433700	-0.74579100	-0.41183900
С		6.18047100	0.73904100	-0.15833500
С		4.76458600	1.30167500	0.04321200
Н		5.57929800	-0.89254100	-1.45645400
н		6.77937900	-1.37965700	-0.23771200
Н		3.99893700	0.38326600	1.87224700
н		6.71559100	1.22105200	-0.98135300
Н		6.77341800	0.85947400	0.75508800
Н		4.29142100	1.47157900	-0.93169500
н		4.72718000	2.24100100	0.59850600
Н		4.26708300	-1.83795200	0.28035700
Н		-5.54574300	-0.28348400	2.29898600
Н		-6.69931300	-0.33090100	0.94076500
Н		-4.45796000	-0.96293800	-1.66473100
н		-4.31061300	1.57943100	1.24935000
Н		-5.98529000	2.01468000	0.88552500
н		-4.29365600	1.75858300	-1.22953900
Н		-5.86383600	0.95207000	-1.33505200
Н		-3.90964600	-1.31385500	1.00560200
Ca	1	0.03075800	-0.12159600	-0.32621900
Н		-5.24918300	-1.95785100	0.24422400

1	1			
Ν		4.44604200	-0.17432000	-1.10749800
С		5.26616400	0.99171800	-0.55941800
С		3.82393400	-0.92224100	0.07235700
Н		5.16609600	1.84131700	-1.23586800
Н		6.30905000	0.66895000	-0.53083400
С		4.69644900	1.19737100	0.84418400
С		4.41149000	-0.23692500	1.31980000
Н		4.06708100	-1.98460100	0.00505700
С		2.30102000	-0.75196000	-0.05459400
Н		3.77556400	1.78906500	0.80214100
Н		5.40408400	1.72522600	1.48666700
Н		3.71034300	-0.29511900	2.15375700
Н		5.33771500	-0.73732400	1.61864500
0		1.57329700	-1.22164900	0.85177700
0		1.86450400	-0.11897100	-1.07459000
Н		-2.99785200	-1.49069500	-1.46838500
Ν		-2.76086700	-0.91991900	-0.65698900
С		-3.38603400	-1.59946800	0.53810200
С		-3.54740300	0.36621100	-0.81213700
Н		-2.78285700	-1.38233800	1.42884200
Н		-3.36823000	-2.68169900	0.38444100
С		-4.81743900	-1.01496900	0.70313100
С		-4.98562300	-0.03937100	-0.48125000
Н		-3.43115700	0.71810000	-1.84418800
С		-2.99835800	1.50971000	0.11080800
Н		-4.89533000	-0.47392300	1.64948900
Н		-5.57741300	-1.80014300	0.70589300
Н		-5.58968700	0.83232100	-0.22732300
Н		-5.43929500	-0.54361500	-1.34260200
0		-1.71396600	1.46610300	0.32792800
0		-3.78312500	2.35531000	0.51139100
Н		3.61939700	0.15777100	-1.64602100
Н		4.99942700	-0.78284600	-1.71292700
Ca	1	-0.41070200	-0.23737900	-0.14466600

1 1			
Ν	-1.22971100	-0.55514500	-0.50928400
С	-0.75181800	-1.43136200	0.61968700
С	-2.68630700	-0.81838400	-0.67117200
Н	-0.87420900	-0.88716000	1.56488400
Н	0.31777400	-1.62501800	0.49727900
С	-1.68333900	-2.64246300	0.57949900
С	-3.04948000	-2.00000900	0.28822000
Н	-2.91567000	-1.09017100	-1.70764000
С	-3.48548700	0.43447500	-0.36806000
Н	-1.68265800	-3.21254000	1.51200600
Н	-1.39092700	-3.31925800	-0.23188500
Н	-3.49325900	-1.61715200	1.21363300
Н	-3.77470900	-2.67438500	-0.16957400
0	-4.78662500	0.26278500	-0.49388900
0	-2.98769700	1.51718500	-0.03165600
Н	2.82731900	-1.53468300	1.54608500
Ν	2.76932400	-1.11079000	0.62627200
С	3.62569000	-1.80344700	-0.36468700
С	3.17457100	0.32769400	0.67877500
Н	3.08373900	-2.64310700	-0.81257900
Н	4.54775400	-2.19757600	0.08941900
С	3.96652900	-0.69953300	-1.36823900
С	4.20643400	0.51166900	-0.45116400
Н	3.57571200	0.59670200	1.66155600
С	1.88259600	1.11546800	0.48822000
Н	3.11209900	-0.50638200	-2.02588100
Н	4.83152300	-0.94690500	-1.98888000
Н	4.08911100	1.46792100	-0.96443000
Н	5.21563600	0.46997500	-0.02805700
0	1.53716100	1.52449900	-0.67498300
0	1.11021000	1.26781300	1.49948300
Н	-5.26453900	1.08735800	-0.28713400
Н	-0.74927100	-0.86307500	-1.35301900
Ca	-0.62067200	1.83070500	0.08435900

1 1			
Ν	-2.25520400	-0.56101800	-1.06202400
С	-2.14601300	-1.97196300	-0.50401900
С	-3.35443700	0.12889400	-0.31362100
Н	-1.29005100	-2.02438600	0.17700600
Н	-1.95873200	-2.66909800	-1.32357200
С	-3.46193800	-2.21118100	0.23758700
С	-3.75625500	-0.83273300	0.84219800
Н	-4.22180100	0.29939900	-0.96079800
С	-2.91614100	1.47761100	0.21662400
Н	-3.37463700	-2.99051200	0.99837900
Н	-4.25718000	-2.50060600	-0.45917400
Н	-3.12027300	-0.66074900	1.71888200
Н	-4.79438800	-0.68115600	1.14174000
0	-3.91365300	2.18101500	0.71658600
0	-1.74885500	1.88453500	0.21929700
Н	2.94022200	1.23511100	-1.69688200
Ν	2.50014200	0.86686800	-0.85327600
С	3.02048800	1.69720100	0.29329000
С	3.11751900	-0.49946700	-0.62941100
Н	2.27709900	1.68977300	1.10113900
Н	3.13746300	2.73249300	-0.03748200
С	4.34162300	1.03663900	0.77917200
С	4.53467200	-0.18887900	-0.14166300
Н	3.10523700	-1.04168600	-1.58249200
С	2.28787200	-1.36376000	0.38293200
Н	4.24173900	0.71816200	1.81954100
Н	5.18406000	1.73019500	0.72362900
Н	4.96452400	-1.04457500	0.37998100
Н	5.17593200	0.05983300	-0.99492800
0	0.99858600	-1.15849300	0.34876200
0	2.87840000	-2.17418500	1.07763800
н	-3.58874800	3.02553000	1.08051100
н	-2.55022200	-0.63422100	-2.03303100
Ca	0.03475200	0.55592000	-0.62610700

1	1			
Ν		3.46531200	0.16237500	-0.23996600
С		2.93498600	1.35293300	-1.02583000
С		2.66733800	0.12222200	1.05777200
Н		1.99611700	1.03587000	-1.48810500
Н		3.66638900	1.63436000	-1.78504700
С		2.67887600	2.38024700	0.07032000
С		2.06795200	1.54246700	1.21357700
Н		3.34527500	-0.15136900	1.87077400
С		1.63424300	-1.00489900	0.88606700
н		3.61349600	2.86260900	0.38023900
Н		1.98389000	3.14372400	-0.28222700
Н		0.98515100	1.49069400	1.09913200
Н		2.28611100	1.95382500	2.20043600
0		0.58673100	-0.97752200	1.58295900
0		1.86742300	-1.87190100	-0.01631400
Н		-3.54400700	-0.54332300	-0.13764100
Ν		-2.58108900	-0.24902700	0.03282900
С		-2.55616200	0.35398200	1.40391300
С		-2.32180300	0.92813700	-0.87858600
н		-1.50734600	0.48921800	1.69013800
Н		-3.01667400	-0.32894900	2.12406900
С		-3.27747200	1.70115200	1.26147100
С		-2.90839700	2.17388300	-0.16910800
н		-2.80114900	0.72560500	-1.84222200
С		-0.79737000	1.02357600	-1.18023300
Н		-2.97516100	2.41409500	2.03317300
Н		-4.35907800	1.55344400	1.35786700
Н		-2.15506200	2.96389600	-0.15998200
н		-3.78268200	2.55670700	-0.70127600
0		-0.23862200	-0.11176500	-1.48816000
0		-0.20749400	2.10214200	-1.12280200
Н		3.29126900	-0.74407300	-0.70855900
Н		4.46571700	0.26208300	-0.05912500
Sr		-0.64419200	-2.03372900	-0.30587700

1	1			
С		5.09999500	-0.70992600	0.47888500
С		4.26088500	-0.26130300	-0.73020800
Ν		4.55649100	1.23101000	-0.87494600
С		5.44192200	1.66197000	0.28880100
С		5.21733500	0.56519500	1.33128100
С		2.74014000	-0.38226800	-0.50427300
0		2.06402000	0.70104100	-0.53952400
0		2.26833100	-1.52366600	-0.29971300
0		-2.45435200	-0.86159200	-0.64983300
С		-2.78276900	-0.53466000	0.54447200
0		-1.90674400	-0.48827100	1.48177900
С		-4.20157600	-0.07513700	0.85526300
Ν		-4.16214000	1.40374800	0.68857800
С		-5.26297000	1.81459600	-0.20611100
С		-5.43496700	0.59991100	-1.12224400
С		-5.26615400	-0.57536600	-0.14306800
Н		-4.99139200	2.72698700	-0.74700900
Н		-6.19900000	2.00831300	0.34303800
Н		-4.42431300	-0.36839400	1.88758900
Н		-4.63765000	0.57807600	-1.87225800
Н		-6.39912700	0.59275100	-1.63784500
Н		-4.96742800	-1.50341800	-0.63515200
Н		-6.20382400	-0.75775400	0.39297200
Н		-4.16792400	1.88533700	1.58013700
Н		5.15569400	2.66818300	0.59782500
Н		6.47264800	1.67196100	-0.07248800
Н		4.51996700	-0.77999800	-1.65544300
Н		4.29316900	0.75102500	1.88941200
Н		6.03975400	0.52408500	2.04848400
Н		4.61473700	-1.54168800	0.99228000
Н		6.08769700	-1.04521700	0.14714100
Н		3.60597200	1.65901400	-0.82096600
Sr		-0.13595000	-0.63733900	-0.10662100
Н		4.96558200	1.46814000	-1.78002200

1	1			
Ν		-1.17400500	-0.79836400	-0.49069700
С		-0.48088800	-1.64930500	0.54519800
С		-2.59030400	-1.25495100	-0.55997500
Н		-0.50402000	-1.12385800	1.50662600
Н		0.56536700	-1.78662500	0.25702500
С		-1.30640500	-2.93501400	0.60865700
С		-2.74355700	-2.41401000	0.47422700
Н		-2.83069300	-1.62368800	-1.56403200
С		-3.54479600	-0.11320700	-0.27710500
Н		-1.14861600	-3.49410100	1.53459200
Н		-1.05246200	-3.59200100	-0.23150800
н		-3.09533500	-2.02119100	1.43520700
н		-3.46635500	-3.15772800	0.13486500
0		-4.81474700	-0.47185400	-0.35842900
0		-3.19710600	1.03766200	0.00820700
Н		2.67562100	-0.73961100	-1.44408200
Ν		2.84577400	-1.18336900	-0.54116600
С		4.21256000	-1.74987300	-0.53481300
С		2.91199700	-0.10348800	0.45945500
н		4.40894900	-2.26210900	-1.48026600
Н		4.26830200	-2.49881600	0.26297100
С		5.19461400	-0.57418900	-0.24752400
С		4.28881800	0.58618300	0.25105300
н		2.86381600	-0.54604200	1.46029100
С		1.72587600	0.82204700	0.31085300
Н		5.73978800	-0.28005600	-1.14896600
Н		5.93864800	-0.85607500	0.50305800
н		4.19137300	1.36189900	-0.51583000
Н		4.65615200	1.05865700	1.16596700
0		1.35770200	1.17343100	-0.86535400
0		1.07155300	1.19035100	1.34627900
Н		-5.39521500	0.28555400	-0.15979400
Н		-0.72490800	-0.99358100	-1.38385800
Sr		-0.79314500	1.81630600	-0.00881600

1	1			
Ν		1.79580400	-0.77195600	-0.26653900
С		2.97309000	-1.31342700	-1.00783700
С		2.33298600	0.05751600	0.84574700
Н		3.25060000	-0.61433200	-1.80834300
Н		2.71100000	-2.27099400	-1.46471700
С		4.09346300	-1.39742600	0.03514300
С		3.88417500	-0.10676600	0.84190100
Н		1.90231100	-0.30067600	1.78957800
С		1.88807500	1.49763300	0.71300900
Н		5.09047400	-1.45944200	-0.40878800
Н		3.94579200	-2.27865800	0.66935400
Н		4.35714200	0.74102500	0.33429900
Н		4.28521800	-0.14858300	1.85574000
0		2.46135600	2.30608300	1.59010000
0		1.05578700	1.90354500	-0.10732400
Н		-2.14996900	1.67065000	0.83187800
Ν		-2.25662600	0.83496500	0.26049000
С		-3.60850600	0.89520600	-0.38625200
С		-2.27389200	-0.35867600	1.20942800
Н		-3.57803900	0.32919100	-1.32748200
Н		-3.86862400	1.93215500	-0.61747500
С		-4.55769800	0.20333800	0.59546400
С		-3.69410600	-0.96055600	1.10697500
Н		-2.05608600	-0.01138300	2.22213700
С		-1.16001200	-1.32435400	0.77214300
Н		-5.48647100	-0.12866700	0.12355200
Н		-4.81781600	0.88790700	1.41184400
Н		-3.69342400	-1.77630400	0.37695300
Н		-4.02885500	-1.36099000	2.06633600
0		-1.15528600	-1.58081900	-0.50363700
0		-0.29715700	-1.69310100	1.57951100
Н		2.12536700	3.21385500	1.48008800
Н		1.28931100	-1.54805900	0.17344800
Sr		-0.31145300	0.31688500	-1.48656800

1	1			
Ν		-2.56023400	-0.92729000	0.82460300
С		-3.73185700	0.03008200	0.97496700
С		-2.37259500	-1.20209200	-0.65988100
н		-3.40548800	0.82249700	1.64646500
Н		-4.57113100	-0.51571100	1.40865600
С		-4.01349500	0.54537000	-0.45580400
С		-2.78894900	0.12104000	-1.29005900
Н		-3.05805700	-2.01266900	-0.92924300
С		-0.92777100	-1.68200100	-0.83808100
н		-4.15438100	1.62769600	-0.45919500
Н		-4.92453000	0.08507100	-0.85048300
Н		-1.97644000	0.84385700	-1.18582200
Н		-3.01086600	0.00501700	-2.35243700
0		-0.16520200	-1.09210100	-1.65313000
0		-0.54296900	-2.58485500	-0.03027400
н		2.91924100	1.92396700	0.03675100
Ν		1.99236400	1.51888600	-0.09102800
С		1.50159000	1.96257500	-1.44909600
С		1.09891600	2.21478600	0.89421700
н		0.88428400	1.16921700	-1.88206800
Н		2.36396700	2.11376600	-2.10402600
С		0.66456300	3.25514200	-1.23320300
С		0.82239300	3.58402600	0.26546600
Н		1.61615000	2.27705200	1.85888800
С		-0.18480200	1.38293000	1.13378100
Н		-0.38684700	3.06312800	-1.46368300
Н		1.00024100	4.07260900	-1.87565200
Н		-0.06539100	4.05448700	0.69028800
Н		1.68251300	4.24132500	0.43568200
0		-0.00006400	0.10257000	1.32157200
0		-1.29307100	1.91935100	1.13806300
Н		-1.66921200	-0.48326700	1.17297200
Н		-2.66988500	-1.80012200	1.34225600
Ba	1	1.76791800	-1.31535600	0.16271300

1	1	
С		-2.181653 1.505129 -0.768182
С		-3.171614 0.334565 -0.886768
Ν		-3.861648 0.275028 0.475031
С		-3.174181 1.270291 1.405924
С		-1.826612 1.523164 0.728061
С		-2.475870 -1.030678 -1.065588
0		-1.705386 -1.173196 -2.044697
0		-2.693553 -1.908670 -0.168431
0		0.302048 -1.070736 0.755837
С		1.481321 -0.930798 0.274240
0		1.928465 -1.724043 -0.619578
С		2.319936 0.240717 0.738159
Ν		3.753235 0.028083 0.528914
С		4.308122 1.335602 0.147878
С		3.225781 2.004475 -0.722445
С		1.912188 1.553090 -0.049363
Н		5.268189 1.209860 -0.359844
Н		4.488645 1.926255 1.055856
Н		2.109344 0.383474 1.803706
Н		3.283791 1.611581 -1.744005
Н		3.319182 3.093936 -0.774843
Н		1.116121 1.366924 -0.777863
Н		1.543703 2.305726 0.654918
Н		3.870388 -0.636067 -0.233783
Н		-3.117056 0.834743 2.404417
Н		-3.795787 2.168213 1.434208
Н		-3.917284 0.464926 -1.673860
Н		-1.114685 0.725030 0.964547
Н		-1.396364 2.474606 1.048558
н		-1.321399 1.338260 -1.417946
Н		-2.665570 2.439471 -1.071263
Н		-3.691492 -0.712723 0.769270
Ва		-0.277675 -3.059124 -0.802227
Н		-4.868619 0.430507 0.417301

1 1			
Ν	-0.61445700	-0.96684600	0.43095100
С	-0.74770200	-1.34322000	1.86928100
С	-1.50448500	-1.86601700	-0.34081400
Н	-1.53358300	-0.73514800	2.34369600
Н	0.19123800	-1.13603100	2.38671900
С	-1.16873000	-2.81641800	1.85944100
С	-2.14592800	-2.86492600	0.67585000
Н	-0.92192500	-2.41863000	-1.08800100
С	-2.55960500	-1.09087800	-1.10187800
Н	-1.62628200	-3.14213400	2.79741900
Н	-0.29615400	-3.45031300	1.66523300
Н	-3.13561700	-2.51060800	0.98700900
Н	-2.27341900	-3.85670500	0.23900200
0	-3.32570400	-1.86944900	-1.85360300
0	-2.71937900	0.13118500	-1.04114800
Н	2.06048400	-0.80729500	-1.41647500
Ν	2.27387000	-1.18593800	-0.49107700
С	3.44729200	-2.08504900	-0.62538200
С	2.80561600	-0.03891000	0.29016500
Н	3.32380000	-2.72794900	-1.50086700
Н	3.48545700	-2.73164400	0.25744200
С	4.70833900	-1.16968100	-0.69720200
С	4.19377200	0.24704900	-0.31772300
Н	2.90127100	-0.34839900	1.33608500
С	1.78097600	1.07930400	0.22811300
Н	5.15027000	-1.17177600	-1.69738600
Н	5.47938300	-1.51499100	-0.00260900
Н	4.06969100	0.87304300	-1.20760600
Н	4.85440200	0.77182900	0.37731900
0	1.32870600	1.41646500	-0.92100200
0	1.28898700	1.54187000	1.30602000
Н	-3.99414900	-1.33366200	-2.31751200
Н	0.35699800	-1.17779900	0.14465700
Ва	-0.98474800	1.86463600	0.10992000

1 1			
Ν	-1.87432900	0.15791000	-0.80258300
С	-3.03577800	-0.33736400	-1.59619000
С	-2.42590400	0.95652500	0.32349600
Н	-3.33444900	-1.32836600	-1.22700300
Н	-2.74930600	-0.43661600	-2.64644200
С	-4.15570200	0.67933100	-1.34422800
С	-3.97417700	0.99544300	0.14757900
Н	-2.00492500	1.96894700	0.27497000
С	-1.99640600	0.40307400	1.66432900
Н	-5.15087900	0.29049400	-1.57581100
Н	-3.98782100	1.57577700	-1.95160900
Н	-4.44912400	0.22173700	0.76133200
Н	-4.38868700	1.95792800	0.45139600
0	-2.57428300	1.01974200	2.68658600
0	-1.17906600	-0.50862400	1.82762200
Н	2.21375400	0.52406400	1.88136400
Ν	2.31270400	0.25144600	0.90572000
С	3.69229100	-0.30214000	0.72517100
С	2.23282700	1.52317500	0.07473400
Н	3.68355500	-1.02285400	-0.10480800
Н	4.00957200	-0.82751600	1.63077500
С	4.56558700	0.89782500	0.34673900
С	3.62675700	1.69539600	-0.57182600
Н	1.98879000	2.36279500	0.73002400
С	1.09841900	1.36165200	-0.95012500
Н	5.49829500	0.60581000	-0.14376400
Н	4.82039700	1.47438100	1.24424200
Н	3.62088900	1.25640400	-1.57467300
Н	3.89878100	2.74930200	-0.66215100
0	1.13474400	0.24419100	-1.61295100
0	0.19308700	2.20444300	-1.01726300
Н	-2.25065700	0.64679200	3.52598300
н	-1.32736600	0.81300400	-1.37155600
Ва	0.32995000	-1.54666200	-0.14204000