Supplementary information for

Fluorescence of nitrobenzoxadiazole (NBD) labeled lipids in model membranes is connected not to lipid mobility, but to probe location

Mariana Amaro¹, Hugo A. L. Filipe^{2, 3, 4}, J. P. Prates Ramalho⁵, Martin Hof^{1,*}, and Luís M. S. Loura^{2, 4, 6,*}

¹ Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 182 23 Prague, Czech Republic

² Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal

³ Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal

⁴ Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-504 Coimbra, Portugal

⁵ Departamento de Química and Centro de Química de Évora, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal

⁶ Faculdade de Farmácia, Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, P-3000-548 Coimbra, Portugal

* Corresponding authors

M.H.: Telephone: +420-266053264; Fax: +420-286582677; E-mail martin.hof@jh-inst.cas.cz L.M.S.L.: Telephone: +351-239488485; Fax: +351-239827126; E-mail: lloura@ff.uc.pt

1. Supplementary tables

Atom	Charge								
N1	-0.28	08	-0.56	C15	0.16	C22	0.31	C44	0.92
C2	0.02	N9	-0.34	C16	0.24	C23	0.32	O45	-0.61
C3	-0.08	C10	0.33	O17	-0.51	O24	-0.68	C65	0.70
C4	-0.02	C11	0.45	P18	1.21	C25	0.82	O66	-0.73
C5	-0.22	O12	-0.04	O19	-0.78	O26	-0.68	O67	-0.73
N6	0.81	N13	-0.25	O20	-0.78	C42	0.25		
07	-0.60	H14	0.32	O21	-0.49	O43	-0.48		

Table S1. Atomic charges used for NBD-PS. Identically to the host lipid, acyl-chain CH_n united atoms (unnumbered in Fig. 1C) were modeled with zero charge.

Table S2. Atomic charges used for NBD-PSH. Identically to the host lipid, acyl-chain CH_n united atoms (unnumbered in Fig. 1C) were modeled with zero charge.

Atom	Charge								
N1	0.20	08	-0.48	C15	-0.14	C22	0.31	C46	0.92
C2	-0.09	N9	-0.34	C16	0.36	C23	0.32	O47	-0.61
C3	-0.10	C10	0.43	O17	-0.50	O24	-0.68	C65	0.63
C4	0.10	C11	0.36	P18	1.16	C25	0.82	O66	-0.50
C5	-0.29	O12	0.04	O19	-0.71	O26	-0.68	O67	-0.52
N6	0.80	N13	-0.31	O20	-0.71	C44	0.25	H68	0.30
07	-0.51	H14	0.07	O21	-0.42	O45	-0.48		

Table S3. Calculated absorption data of NBD-C₂ in different solvents and main orbitals involved in the transition. Experimental data (*Exp*) is taken from references for (NBD-C₃)¹ and (NBD-C₁)².

		PCM-P 31+0	BE0/6- G(d)	PCM-PBE0/6- SMD-M0 311+G(d,p) 31+G(/106/6- G(d)	SMD-M06/6- 311+G(d,p)				
Solvent	State	λ (nm)	f	λ (nm)	f	$\lambda(nm)$	f	λ (nm)	f	Exp	$\begin{array}{c} \text{Major MO} \rightarrow \text{MO} \\ \text{transitions} \end{array}$
Cyclohexane	\mathbf{S}_1	407	0.37	411	0.36	413	0.35	415	0.34	425 ^a 425 ^b	HOMO->LUMO (98%) HOMO->L+1 (2%)
Cyclonexune	S_3	306	0.22	308	0.22	308	0.21	309	0.21	305 ^a	HOMO->L+1 (97%) HOMO->LUMO (2%)
Totrobudrofuron	\mathbf{S}_1	416	0.39	420	0.38	422	0.35	425	0.35	457 ^a 454 ^b	HOMO->LUMO (97%) HOMO->L+1 (3%)
Tettanyarorunan	S_3	316	0.25	318	0.25	317	0.25	319	0.25	325 ^a	HOMO->L+1 (96%) HOMO->LUMO (3%)
Acotono	\mathbf{S}_1	417	0.38	421	0.37	424	0.34	427	0.34	461 ^a 456 ^b	HOMO->LUMO (96%) HOMO->L+1 (3%)
rectone	S_3	318	0.26	320	0.26	320	0.26	322	0.26	332 ^a	HOMO->L+1 (96%) HOMO->LUMO (3%)
Dimethylsulphoxide	\mathbf{S}_1	420	0.41	424	0.40	425	0.35	429	0.35	478 ^a 474 ^b	HOMO->LUMO (96%) HOMO->L+1 (3%)
Dimetriyistipiloxide	\mathbf{S}_2	320	0.26	323	0.27	321	0.26	323	0.26	343 ^a	HOMO->L+1 (96%) HOMO->LUMO (3%)
Ethanol	\mathbf{S}_1	417	0.38	421	0.38	425	0.39	428	0.39	464 ^a 459 ^b	HOMO->LUMO (96%) HOMO->L+1 (4%)
Lunanoi	S_2	319	0.26	321	0.27	326	0.26	328	0.26	331 ^a	HOMO->L+1 (95%) HOMO->LUMO (4%)
Water	\mathbf{S}_1	417	0.38	421	0.37	425	0.39	429	0.39	482 ^a 478 ^b	HOMO->LUMO (95%) HOMO->L+1 (4%)
W dtOI	S_3	319	0.26	321	0.27	328	0.26	330	0.26	348 ^a	HOMO->L+1 (95%) HOMO->LUMO (4%)

f: oscillator strength

(1) Fery-Forgues, S.; Fayet, J.-P.; Lopez, A. J. Photochem. Photobiol. A Chem. 1993, 70, 229.

(2) Uchiyama, S.; Santa, T.; Imai, K. J. Chem. Soc. Perkin Trans. 2 1999, 2525.

Table S4. Calculated emission data of NBD-C₂ in several solvents. Experimental data is taken from references for (NBD-C₃)¹ and (NBD-C₁)².

	PCM-PBE0/6- 31+G(d)	PCM-PBE0/6- 311+G(d,p)	SMD-M06/6- 31+G(d)	SMD-M06/6- 311+G(d,p)	Experimental
Solvent	λ (nm)	λ (nm)	λ (nm)	λ (nm)	λ (nm)
Cyclohexane	466	471	473	477	495 ^a 499 ^b
Tetrahydrofuran	484	489	495	499	525 ^a 516 ^b
Acetone	489	495	501	505	529 ^a 521 ^b
Dimethylsulphoxide	491	496	504	508	545 ^a 532 ^b
Ethanol	490	495	500	505	537 ^a 524 ^b
Water	491	497	503	508	566ª 541 ^b

(1) Fery-Forgues, S.; Fayet, J.-P.; Lopez, A. J. Photochem. Photobiol. A Chem. 1993, 70, 229.

(2) Uchiyama, S.; Santa, T.; Imai, K. J. Chem. Soc. Perkin Trans. 2 1999, 2525.

Table S5. Dipole moments (μ /D) of NBD-C₂ in different solvents and in the gas phase, with different solvent models and different basis sets.

Solvent	PCM-B3LYP/6- 31+G(d)		SMD-B3LYP/6- 31+G(d)			PCM-PBE0/6-31+G(d)			PCM-PBE0/6- 311+G(d,p)			
	$\mu_{ m g}$	$\mu_{ m e}$	$\Delta \mu$	$\mu_{ m g}$	$\mu_{ m e}$	$\Delta \mu$	$\mu_{ m g}$	$\mu_{ m e}$	$\Delta \mu$	$\mu_{ m g}$	$\mu_{ m e}$	$\Delta \mu$
Cyclohexane	12.24	14.38	2.14	12.11	14.33	2.22	12.16	14.30	2.14	12.20	14.34	2.13
Tetrahydrofuran	14.47	16.40	1.93	14.06	16.29	2.23	14.34	16.28	1.94	14.40	16.33	1.94
Acetone	15.16	16.96	1.80	14.76	16.89	2.12	15.02	16.83	1.81	15.08	16.89	1.81
Dimethylsulphoxi de	15.40	17.15	1.75	14.87	17.03	2.16	15.25	17.01	1.76	15.32	17.08	1.76
Ethanol	15.22	17.01	1.79	15.91	17.54	1.62	15.08	16.88	1.80	15.14	16.94	1.80
Water	15.47	17.21	1.74	16.34	17.81	1.47	15.33	17.07	1.75	15.39	17.14	1.75
Cosphase	B3LY	YP/6-31+	-G(d)				PBE	E0/6-31+ 0	G(d)	PBEC)/6-311+G	(d,p)
Gas pliase	10.27	12.33	2.05				10.23	12.28	2.05	10.26	12.30	2.04

 (μ_g) dipole moment of the ground state

 (μ_e) dipole moment of the excited state

 $\Delta \mu = \mu_{\rm g} - \mu_{\rm e}$

System	<i>a</i> (phospholipid) (nm ²)	a(Chol) (nm ²)	Bilayer thickness (nm)
DOPC	0.684 ± 0.015		3.70 ± 0.10
DOPC/NBD-PS	0.673 ± 0.015		3.74 ± 0.10
DOPC/NBD-PSH	0.675 ± 0.018		3.74 ± 0.19
DOPC/Chol	0.602 ± 0.015	0.288 ± 0.008	4.08 ± 0.10
DOPC/Chol/NBD-PS	0.583 ± 0.015	0.285 ± 0.007	4.17 ± 0.12
DOPC/Chol/NBD-PSH	0.590 ± 0.015	0.288 ± 0.008	4.17 ± 0.12

Table S6. Average molecular area (*a*) and bilayer thickness values for all simulated systems.

Figure S1. Plot of the orbitals mainly involved in the two lowest energy transitions of NBD- C_2 in solution.

Figure S2. Representation of the calculated ground and excited state dipole moment vectors (labeled as μ_g and μ_e), as well as its vector difference (red arrow), for NBD-C2 in cyclohexane (left) and water (right).

Figure S3. Selected time-resolved emission spectra (TRES) of NBD-PS in DOPC LUVs at pH 5, 20°C. TRES were generated from 0.01ns to 50ns in a logarithmic time-scale of 100 steps. The grey vertical line is positioned at the maxima of the first generated spectra and is meant to be a guide for the eye. The dashed vertical line is the equivalent for NBD-PS in DOPC at pH 7, 20°C (shown as Figure 7 in the main text). The dashed line is displayed to illustrate the how, at pH 5, the first generated spectrum is already shifted to shorter wavelengths compared to pH 7.

Figure S4. Amplitude-averaged lifetime values calculated from the 3-exponential fits of the lifetime decays of NBD-PS ($T = 20^{\circ}C$) in DOPC and DOPC/Chol, at both pH 5 and pH 7. The

average lifetimes were calculated as
$$\langle \tau \rangle = \sum_{i=1}^{n} f_i \tau_i$$
, where $f_i = \frac{\alpha_i \tau_i}{\sum_{i=1}^{n} \alpha_i \tau_i}$.

Figure S5. Time evolution of the molecular areas (*a*) for the systems without Chol (A) and with 20 mol% Chol (B).

Figure S6: Time evolutions of the transverse position *z* of the fluorophore center of mass, for the 4 individual NBD-PS or NBD-PSH probes in each system (from A to D: DOPC/NBD-PS, DOPC/NBD-PSH, DOPC/Chol/NBD-PS, DOPC/Chol/NBD-PSH).

Figure S7. Final structures of all simulated systems. From A to F: DOPC, DOPC/NBD-PS, DOPC/NBD-PSH, DOPC/Chol, DOPC/Chol/NBD-PS, DOPC/Chol/NBD-PSH.

Figure S8. H-bonding between the NBD NH (donors) and H_2O O (acceptors) atoms (far left), and between H_2O (donors) and all NBD fluorophore nitrogen and oxygen atoms. For NBD atom numbering, see Fig. 1D. *f* denotes the fraction of configurations for which H-bonds are formed (relative to the maximal theoretical number).

Figure S9. Fraction f(n = 0) of conformations for which no H-bonding is observed (magenta line), as a function of the transverse location of the fluorophore centre of mass relative to the bilayer midplane (*z*), for the (A) DOPC/NBD-PS, (B) DOPC/NBD-PSH, (C) DOPC/Chol/NBD-PS, and (D) DOPC/Chol/NBD-PSH systems. The dotted blue line represents the average DOPC phosphorus atom location in each system, while the black curve is the NBD mass distribution profile $\rho(z)$.

Figure S10. Mass density profiles of host lipid, water and NBD fluorophore, simulated in the absence (I = 0) and presence (I = 150 mM) of added NaCl, for the (A) DOPC/NBD-PS, (B) DOPC/NBD-PSH, (C) DOPC/Chol/NBD-PS, and (D) DOPC/Chol/NBD-PSH systems.