Supplementary material for:

Photodissociation of medium-sized argon cluster cations in the visible region.

Martin Stachoň¹, Aleš Vítek¹ and René Kalus^{1,2}

 ¹IT4Innovations National Supercomputing Center, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
²Department of Applied Mathematics, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic

Abstract

In this supplementary material, some additional data are provided, for reader's better idea, on the kinetics of fragmentation processes in photoexcited argon cluster cations, Ar_N^+ , which amend the data presented in Subsec. III.B of the paper and provide a broader background for the discussions therein.

Last update: October 15, 2015

Figure 1

The same as in Fig. 3 of the paper (time evolution of relative abundances of ionic intermediate and final fragments, Ar_K^+ , resulting from Ar_9^+ photoexcited by $E_{\rm phot} = 2.35 \ eV$ as obtained via the MFQ-AMP/S(sepfrag) method) with points calculated via the MFQ-AMP/S (solid dots) and MFQ-TFS/C (open circles) methods added for comparison.

Figure 2

The same as in Fig. 4 of the paper (time evolution of relative abundances of ionic intermediate and final fragments, $\operatorname{Ar}_{K}^{+}$, resulting from $\operatorname{Ar}_{19}^{+}$ photoexcited by $E_{\text{phot}} = 2.35 \text{ eV}$ as obtained via the MFQ-AMP/S(sepfrag) method) with points calculated via the MFQ-AMP/S (solid dots) and MFQ-TFS/C (open circles) methods added for comparison. Note that different time scales are used in the two panels (left panel $K \geq 8$ and right panel $K \leq 7$).

Figure 3 Time evolution of relative abundances of ionic intermediate and final fragments, Ar_K^+ , resulting from Ar_6^+ (upper panel), Ar_{12}^+ (middle panels), and Ar_{15}^+ (bottom panels) photoexcited by $E_{\rm phot} = 2.35 \, \text{eV}$ as obtained via the MFQ-AMP/S(sepfrag) method (lines), MFQ-AMP/S method (full dots), and MFQ-TFS/C method (open circles).

Figure 4 Representative least-squares fits of dissociation rate constants given in Table I of the paper: upper panel $-Ar_{19}^+$ and bottom panel $-Ar_9^+$; solid symbols – abundances resulting from MFQ-AMP/S(sepfrag) dynamical calculations, solid lines – least-squares fits of Eq. 8 of the paper, dashed line (in the upper panel) – least-squares fit of Eq. 9 of the paper.

