Supporting Information for

The Effect of Cations on NO₂ Production from the Photolysis of Thin Water Films Containing Nitrate

Nicole K. Richards-Henderson^{1,2}, Crisand Anderson¹, Cort Anastasio², and Barbara J. Finlayson-Pitts^{1*}

¹Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.

E-mail: bjfinlay@uci.edu; Fax: 949-824-2420; Tel: 949-824-7670

²Department of Land, Air and Water Resources, University of California - Davis, 1 Shields Ave., Davis, CA 95616, USA **Figure S1**: Rate of OH formation as a function of added benzene concentration for solutions of either 5 mM NaNO₃ (orange) or $Mg(NO_3)_2$ (purple) at 298 K, pH 5.0 and using 313 nm illumination.

Figure S2: UV-vis spectra of Ca(NO₃)₂ (red), NaNO₃ (orange), Mg(NO₃)₂ (purple), KNO₃ (green) and RbNO₃ (blue) at 0.5 M concentrations of NO₃⁻. The photolysis lamp spectrum is provided as the black line. The short black line is centered at 302 nm.

The molar absorptivities of RbNO₃, $Mg(NO_3)_2$ and NaNO₃ are centered around 302 nm (short black solid line), while KNO₃ and Ca(NO₃)₂ show a very small shift toward the blue (300 nm).

UV-vis spectra were also conducted at 2 M nitrate ion concentration and no substantial

difference in the spectra was measured between the two concentrations.

Figure S3: Quantum yields of OH (298 K; pH 5.0; 313 nm illumination) as a function of NaNO₃ solution concentration. The sodium benzoate concentration was always two times the NaNO₃ concentration in order to sufficiently scavenge all of the OH generated.

Light Attenuation through Thin Films

To determine if there is significant light attenuation in our thin films we calculated the light absorbance using Beer's Law (equation S1),

$$\mathbf{A} = \boldsymbol{\sigma} \, l \, \mathbf{c} \tag{eq. S1}$$

where A is the absorbance, σ is the molar cross section of nitrate at 311 nm (5 M⁻¹ cm⁻¹), *l* is the film thickness (approximately 800 nm), and c is the maximum concentration of nitrate in the film (10 M based on equilibrium saturation concentrations for NaNO₃). Based on these values, the upper bound of light absorbance in the films at 311 nm is 5 × 10⁻³, which is negligible, indicating that there is negligible attenuation of the light in the films.

Expected Rate of NO₂ Formation

The expected R_{NO2} in our experiments (molecules cm⁻³ s⁻¹) is dependent on Eq. S2,

$$R_{NO2} = F_{\lambda} I_{\lambda} \phi \times (L \times W/V^{chamber})$$
(eq. S2)

where I_{λ} is the photon flux (photons cm⁻² s⁻¹), F_{λ} is the fraction of light absorbed, ϕ is the quantum yield of NO₂ formation from nitrate photolysis, L and W are the length and width of the thin film and V ^{chamber} is the volume of the Teflon chamber into which the NO₂ is emitted. For low light absorbing conditions F_{λ} can be approximated as

$$F_{\lambda} \approx 2.303 \sigma_{\lambda} \frac{N_{NO3-}}{V^{film}} l \approx 2.303 \sigma_{\lambda} \frac{N_{NO3-}}{LW}$$
(eq. S3)

where $N_{\text{NO3-}}$ is the number of moles of nitrate added to the chamber, and l and V^{film} are the thickness and volume of the thin film and W and L are as defined above. Combining Eq.S2 and S3 yields S4.

$$R_{NO2} = I_{\lambda} \phi \ 2.303 \ \frac{N_{NO3-}}{V^{chamber}} \sigma_{\lambda} \tag{eq. S4}$$

This shows that the R_{NO2} under our experimental conditions is not dependent on the aqueousphase concentration of nitrate but rather the number of moles of nitrate added to the chamber.

Example of Interface Calculation

To calculate the interface quantum yield for KNO_3 , we used the results of previous molecular dynamic simulations to estimate the increase of NO_3^- in the interface region in our thin

films compared to NaNO₃. The fraction of nitrate ions at the interface was determined (eq. S5, example for KNO₃) from the integrated density profile area of NO₃⁻ within \pm 0.5 nm of the GDS, which for a 2 M KNO₃ solution¹ is 23%. From this we can calculate the ratio of interface to bulk NO₃⁻ for potassium solutions using eq. S5:

$$F_{KNO3} = \frac{N_K^{int}}{N_K^b} = \frac{0.23}{0.77} = 0.3$$
 (eq. S5)

For NaNO₃, the integrated density profile area² of NO₃⁻ within ± 0.5 nm of the GDS is 3%, so $F_{\text{NaNO3}} = 0.03$. The relative enhancement in nitrate abundance in the interface region in going from NaNO₃ to KNO₃ is then $\frac{F_{KNO3}}{F_{NaNO3}} = \frac{0.3}{0.03} = 10$.

The MD simulations used to determine this relative enhancement were conducted using 1.5 nm thick slabs. The interface region of these simulations had a thickness of 1 nm (i.e., \pm 0.5 nm with respect to the GDS), while the remaining thickness (for the bulk) is 0.5 nm. However, in our experiments the bulk thickness (799 nm, t_b) is significantly larger than the interface (1 nm, t_i). When calculating the interface quantum yield, we estimate the bulk-interface partitioning as the product of the initially assumed even "baseline" distribution of NO₃⁻ throughout the solutions (i.e., $\frac{N_{Ra}^b}{N_K^{int}} = \frac{t_b}{t_{int}} = \frac{799}{1}$) divided by the MD-estimated factor of 10 enhancement for KNO₃ (eq. S6):

$$\Phi_K^{int} = 0.73 \ \frac{\Phi_{Na}^b N_{Na}^b}{N_K^{int}} = 0.73 \ \frac{\Phi_{Na}^b t_b F_{NaNO3}}{t_i F_{KNO3}} = 0.73 \ \frac{0.011*799 \ \text{nm}}{1 \ \text{nm}*10} = 0.6$$
(eq. S6)

While we assume an "even" distribution of nitrate ions throughout the NaNO₃ film (i.e., an interface/bulk ratio of NO₃⁻ of 1/799), molecular dynamics modeling indicates that NO₃⁻ is suppressed at the interface and the interface/bulk ratio should be lower.^{1, 2} If we use a lower ratio for NaNO₃ and propagate this to the KNO₃ case (still with the 10-fold enhancement in interfacial NO₃⁻ described in the text), the calculated interface quantum yield for NO₃⁻ will be higher than 0.6. While a value of 1 is an upper limit, an interface/bulk ratio consistent with the MD modeling ^{1, 2} would push the interfacial nitrate quantum yield to above 1, suggesting either that the absolute MD distributions for nitrate have significant error bars, or perhaps that other phenomena might also be enhancing NO₂ release.

Once the interface quantum yield was determined, the relative contribution of the interface was determined using eq. S7.

$$\frac{\Phi_{K}^{int} N_{K}^{int}}{\Phi_{K}^{b} N_{K}^{b} + \Phi_{K}^{int} N_{K}^{int}} = \frac{1}{\frac{\Phi_{K}^{b} N_{K}^{b}}{\phi_{K}^{int} N_{K}^{int} + 1}} \sim \frac{1}{\frac{\Phi_{K}^{b} t_{b} F_{NaNO3}}{\Phi_{K}^{int} t_{i} F_{KNO3}} + 1} = 0.4$$
(eq. S7)

References:

 N. K. Richards, L. M. Wingen, K. M. Callahan, N. Nishino, M. T. Kleinman, D. J. Tobias and B. J. Finlayson-Pitts, *J. Phys. Chem. A*, 2011, **115** 5810-5821.
J. L. Thomas, M. Roeselová, L. X. Dang and D. J. Tobias, *J. Phys. Chem. A*, 2007, **111**, 3091-3098.